Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapidly expanding utilization of lanthanides (Ln) for the development of new technologies, green energies, and agriculture has raised concerns regarding their impacts on the environment and human health. The absence of characterization of the underlying cellular and molecular mechanisms regarding their toxicity is a caveat in the apprehension of their environmental impacts. We performed genomic phenotyping and molecular physiology analyses of mutants exposed to La and Yb to uncover genes and pathways affecting Ln resistance and toxicity. Ln responses strongly differed from well-known transition metal and from common responses mediated by oxidative compounds. Shared response pathways to La and Yb exposure were associated to lipid metabolism, ion homeostasis, vesicular trafficking, and endocytosis, which represents a putative way of entry for Ln. Cell wall organization and related signaling pathways allowed for the discrimination of light and heavy Ln. Mutants in cell wall integrity-related proteins (e.g., Kre1p, Kre6p) or in the activation of secretory pathway and cell wall proteins (e.g., Kex2p, Kex1p) were resistant to Yb but sensitive to La. Exposure of WT yeast to the serine protease inhibitor tosyl phenylalanyl chloromethyl ketone mimicked the phenotype of ∆ under Ln, strengthening these results. Our data also suggest that the relative proportions of chitin and phosphomannan could modulate the proportion of functional groups (phosphates and carboxylates) to which La and Yb could differentially bind. Moreover, we showed that ∆, ∆, ∆, and ∆ strains were all sensitive to light Ln (La to Eu), while being increasingly resistant to heavier Ln. Finally, shotgun proteomic analyses identified modulated proteins in ∆ exposed to Ln, among which several plasmalemma ion transporters that were less abundant and that could play a role in Yb uptake. By combining these different approaches, we unraveled that cell wall components not only act in Ln adsorption but are also active signal effectors allowing cells to differentiate light and heavy Ln. This work paves the way for future investigations to the better understanding of Ln toxicity in higher eukaryotes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9162579PMC
http://dx.doi.org/10.3389/fmicb.2022.881535DOI Listing

Publication Analysis

Top Keywords

cell wall
20
light heavy
12
∆ ∆
12
6
cell
5
wall
5
genome-wide mutant
4
mutant screening
4
screening yeast
4
yeast reveals
4

Similar Publications

Diagnoses of prediabetes and metabolic syndromes, such as metabolic-associated steatotic liver disease (MASLD), are increasing at an alarming rate worldwide, often simultaneously. A significant consequence of these is high risk of cardiovascular disease, highlighting the need for cardiac-specific therapeutics for intervention during the prediabetic stage. Recent studies have demonstrated that chemogenetic activation of the cardiac parasympathetic system through hypothalamic oxytocin (OXT) neurons provides cardioprotective effects in heart disease models by targeting excitatory neurotransmission to brainstem cardiac vagal neurons.

View Article and Find Full Text PDF

Exploring the antiangiogenic effects of Phospholipases A from Bothrops diporus venom.

Cell Tissue Res

September 2025

Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.

View Article and Find Full Text PDF

Ectomycorrhizal fungi (EMF) colonize roots to establish symbiotic associations with plants. Sporocarps of the EMF Tuber spp. are considered as a delicacy in numerous countries and is a kind of EMF of great economic and social importance.

View Article and Find Full Text PDF

Thermotolerant yeasts promoting climate-resilient bioproduction.

FEMS Yeast Res

September 2025

Department of Bioengineering, School of Life Science Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.

The growing challenges posed by global warming and the demand for sustainable food and feed resources underscore the need for robust microbial platforms in bioprocessing. Thermotolerant yeasts have emerged as promising candidates due to their ability to thrive at elevated temperatures and other industrially relevant stresses. This review examines the industrial potential of thermotolerant yeasts in the context of climate change, emphasizing how their resilience can lead to more energy-efficient and cost-effective bioprocesses.

View Article and Find Full Text PDF

The Natural Product Osthole, Known for Its Insecticidal and Antimicrobial Properties, Potentially Binds to Amidase, Offering a Novel Approach for Controlling Tomatoes Gray Mold for the First Time.

Phytopathology

September 2025

Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;

Osthole exhibits strong inhibitory activity against phytopathogenic fungi; however, its antifungal mechanism remains unclear. This study assessed osthole's inhibitory effects on several phytopathogenic fungi, revealing a half-maximal effective concentration of 70.03 μg/ml against the hyphal growth of .

View Article and Find Full Text PDF