A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Differences in Microbial Communities Stimulated by Malic Acid Have the Potential to Improve Nutrient Absorption and Fruit Quality of Grapes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Malic acid is a component of the rhizosphere exudate and is vital for crop growth. However, little information is available about the effects of external applications of malic acid on the nutrient absorption and quality of grape fruit, and few studies have been performed on the relationship between the changes in the rhizosphere microbial community and nutrient absorption and fruit quality of grapes after adding malic acid. Here, the LM (low concentration of malic acid) and HM (high concentration of malic acid) treatments comprised 5% and 10% malic acid (the ratio of acid to the total weight of the fertilizer) combined with NPK fertilizer, respectively. Applying malic acid changed the grape rhizosphere microbial community structure and community-level physiological profile (CLPP) significantly, and HM had a positive effect on the utilization of substrates. The microbial community structure in the rhizosphere of the grapes with added malic acid was closely related to the CLPP. The N and P content in the leaves and fruits increased after applying malic acid compared to the control, while K content in the fruits increased significantly. In addition, malic acid significantly reduced the weight per fruit, significantly increased soluble sugar content (SSC) and vitamin C content of the fruit, and significantly improved the fruit sugar-acid ratio and grape tasting score. Moreover, the principal component analysis and grape nutrient and fruit quality scores showed that grape nutrients and fruit quality were significantly affected by malic acid and ranked as 5% malic acid > 10% malic acid > control. Pearson's correlation heatmap of microbial composition, nutrient absorption and fruit quality of the grapes showed that the grape microbial community was closely related to grape nutrients and fruit quality. Adding malic acid was positively correlated to , , and . Furthermore, , , and were closely related to grape nutrient absorption and fruit quality. and were positively correlated with total soluble sugar, while and were positively correlated with titratable acid. Hence, and were the key bacteria that played a major role in grape fruit quality and nutrient absorption after applying malic acid water-soluble fertilizer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9159917PMC
http://dx.doi.org/10.3389/fmicb.2022.850807DOI Listing

Publication Analysis

Top Keywords

malic acid
64
fruit quality
32
nutrient absorption
24
acid
18
malic
16
absorption fruit
16
microbial community
16
fruit
12
quality grapes
12
applying malic
12

Similar Publications