98%
921
2 minutes
20
This paper introduces a nonlinearity compensation based robust tracking controller for hypersonic flight vehicles. The controller focuses on robust control design with respect to the nonminimum phase feature and system uncertainties for the control-oriented model. Firstly, following the principle of decomposing the complex control problem into two simpler problems, the original robust tracking problem for nonlinear nonminimum phase hypersonic flight vehicles is decomposed into a simpler robust tracking problem for a linear nonminimum phase system with disturbances and a stabilization problem for a nonlinear system without disturbances. After the problem decomposition, a proportional-integral tracking controller and a feedback linearization controller are designed for the linear system and the nonlinear system, respectively. Then, the addition of the two designed controllers gives the final controller. By compensating for the system nonlinearity using the secondary system and its controller, the proposed control method can satisfy the robust tracking control requirements for nonlinear nonminimum phase hypersonic flight vehicles. The simulation results show, compared with a feedback linearization control method and a composite neural learning control method, the proposed method has superior tracking accuracy and robustness against system uncertainties and external disturbances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2022.05.019 | DOI Listing |
BMC Ecol Evol
September 2025
Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.
Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.
View Article and Find Full Text PDFISA Trans
August 2025
Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehicle Distributed Drive and Intelligent Wire Control Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Department of Vehicle Engineering and Jiangsu Engineering Research Center of Vehi
The steer-by-wire (SbW) system, as the core component of vehicle steering, needs to track the front wheel angle accurately. To mitigate the angle tracking accuracy degradation caused by D-Q axes coupling, time-varying motor electrical parameters, and load disturbance, a fractional-order adaptive fuzzy decentralized tracking control (FAFDTC) strategy is proposed in this paper. First, considering time-varying motor parameters, D-Q axes coupling, and fractional-order characteristics of components, a fractional-order SbW interconnected system is constructed to enhance its ability to characterize nonlinearities, time-varying dynamics, and system coupling.
View Article and Find Full Text PDFIntroduction: Frailty, characterized by a reduction in intrinsic capacity across multiple physiological systems, is a key concern in healthy aging. Insight in the trajectory of an individual's functional ability and intrinsic reserve capacity in a relatively younger population of older adults is lacking. This study aims to investigate the early stages of frailty by tracking trajectories of physical indicators of intrinsic capacity before frailty becomes clinically evident.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Applied Physics Laboratory, University of Washington, Seattle, Washington 98105, USA.
Echolocating bats provide vital ecosystem services and can be monitored effectively using passive acoustic monitoring (PAM) techniques. Duty-cycle subsampling is widely used to collect PAM data at regular ON/OFF cycles to circumvent battery and storage capacity constraints for long-term monitoring. However, the impact of duty-cycle subsampling and potential detector errors on estimating bat activity has not been systematically investigated for bats.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of neuroscience, UC San Diego, San Diego, California, USA.
Background: Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin gene on chromosome 4, leading to progressive cognitive decline, motor impairment, and functional disability. Although balance impairment is recognized in HD, its onset and evolution with disease stage remain poorly understood.
Objective: The aim was to track the onset and evolution of balance impairment in HD with progression of disease stage using the BTrackS Balance Plate.