98%
921
2 minutes
20
This study presents an eco-friendly and economical process for preparing a magnetic copper complex conjugated to modified calcium lignosulfonate (LS) through a diamine (FeO@LS@naphthalene-1,5-diamine@copper complex; FLN-Cu) as a green and novel catalyst. The prepared catalyst was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES) and field emission scanning electron microscopy (FESEM) techniques. The photocatalytic performance of the synthesized FLN-Cu catalyst was investigated by the degradation of aqueous solutions of dyes such as Rhodamine B (RhB), methylene blue (MB), and Congo red (CR) under UV irradiation. The dye degradation was followed by UV-Vis (ultraviolet-visible) spectrophotometry by measuring the changes in absorbance. The effects of different factors such as pH, contact time, photocatalyst dosage, and initial concentration of dye on the adsorption percentage were also investigated. Moreover, the catalyst showed high stability and could be readily separated from the reaction media using a magnet and reused five times without a remarkable loss of catalytic ability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135180 | DOI Listing |
Adv Colloid Interface Sci
August 2025
Department of Forest Biomaterials, North Carolina State University, Raleigh 27695, NC, USA. Electronic address:
This review considers a profoundly underutilized resource, technical lignin, and its potential for large scale upgrading for higher-valued industrial usage by means of self-assembly processes. Molecular interactions that can be used to guide lignin self-assembly are systematically explored, categorizing them into physicochemical interaction-driven assembly and external stimuli or template-driven assembly. Published findings are examined to reveal molecular mechanisms governing lignin aggregation into lignin nanoparticles (LNPs), films, and interfacial behavior in Pickering emulsions that have potential to be used industrially.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China. Electronic address:
Lignin utilization is one of the key challenges in the valorziation of lignocellulose. Filamentous fungi are promising candidates for lignin degradation and mineralization. However, novel lignin-degrading species are underexplored and the mechanism of lignin degradation is not fully understood.
View Article and Find Full Text PDFBioresour Technol
January 2025
Faculty of Agro-Industry, Chiang Mai University, 155 Moo 2, Mea Hea, Mueang Chiang Mai, Chiang Mai, Thailand 50100; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, 155 Moo 2, Mea Hea, Mueang Chiang Mai, Chiang Mai, Thailand 50100. Electronic address: phisi
J Agric Food Chem
September 2024
Laboratório Associado para a Química Verde─REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal.
Lignosulfonate (LS), kraft lignin (KL), and organosolv lignin (OL) were evaluated as potential modulating agents of the physicochemical properties of Port wine at two different concentrations for 7 and 30 days. KL and LS demonstrated the ability to remove proteins and potentiate the anthocyanin concentration. LS reduced the tannin content and the interaction of salivary acidic proline-rich proteins with wine phenolic compounds.
View Article and Find Full Text PDFLangmuir
March 2024
RISE PFI AS, Høgskoleringen 6B, NO-7094 Trondheim, Norway.
In this paper, the potential of esterified Kraft lignin as a novel oil-soluble surfactant was examined. The lignin was chemically modified by esterification with lauric or stearic acid, making it soluble in solvents such as toluene or -decane. Adsorption at the oil-water interface was then studied by the Du Noüy ring-method.
View Article and Find Full Text PDF