Cartilage lesions, especially osteoarthritis (OA), usually arise from aging, trauma, or obesity and require medical intervention due to the damaged site's inflammation and the cartilage tissue's poor self-healing capacity. This study aimed to prepare a drug-loaded nanoparticle hydrogel system with anti-inflammatory and chondroprotective effects to treat OA. First, hyaluronic acid (HA) was oxidized to create aldehyde functional groups and then cross-linked with adipic acid dihydrazide (ADH) to form a hydrogel.
View Article and Find Full Text PDFNature-inspired chitosan (CS) materials show a high potential for the design/fabrication of sustainable heterogeneous (nano)materials with extraordinary structural/physical features, such as superior biodegradability/biocompatibility, simplicity of chemical modification, environmental safety, high availability, cost-effectiveness, high electrochemical activity, good film-forming ability, and antioxidant, antimicrobial/antibacterial, and anticoagulant activities. Industrialization and growth of industrial wastes or by-products induce an increasing demand for the development of clean, low-cost, and renewable natural systems to minimize or eliminate the utilization of environmentally toxic compounds. The preparation of novel heterogeneous functionalized polysaccharide-inspired bio(nano)materials via chemical modifications of natural CS to improve its physicochemical/biochemical properties has recently become tremendously attractive for many researchers.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Today, with the growth of the human population, industrial activities have also increased. Different industries such as painting, cosmetics, leather, etc. have broadly developed, and as a result, they also produce a lot of pollutants.
View Article and Find Full Text PDFLoading drugs in drug delivery systems can increase their retention time and control their release within the knee cavity. Hence, we aimed to improve the therapeutic efficacy of celecoxib and kartogenin (KGN) through their loading in chitosan nanoparticles (CS NPs). Celecoxib-loaded nanoparticles (CNPs) and KGN-loaded nanoparticles (K-CS NPs) were prepared using the absorption method and covalent attachment, respectively, through an ionic gelation process.
View Article and Find Full Text PDFAdv Colloid Interface Sci
June 2024
The preparation/application of heterogeneous (nano)materials from natural resources has currently become increasingly fascinating for researchers. Cellulose is the most abundant renewable polysaccharide on earth. The unique physicochemical, structural, biological, and environmental properties of this natural biopolymer have led to its increased application in many fields.
View Article and Find Full Text PDFWater sources have become extremely scarce and contaminated by organic and inorganic industrial and agricultural pollutants as well as household wastes. Poisoning water resources by dyes and metals is a problem because contaminated water can leak into subsurface and surface sources, causing serious contamination and health problems. Therefore, developing wastewater treatment technologies is valuable.
View Article and Find Full Text PDFThis study aimed to investigate the biological activities of Lactobacillus gasseri SM 05 (L. gasseri) and Lacticaseibacillus casei subsp. casei PTCC 1608 (L.
View Article and Find Full Text PDFCartilage lesions, especially osteoarthritis (OA), are a common health problem, causing pain and disability in various age groups, principally in older adults and athletes. One of the main challenges to be considered in cartilage tissue repair is the regeneration of cartilage tissue in an active inflammatory environment. Fisetin has various biological effects including anti-inflammatory, antioxidant, apoptotic, and antiproliferative activities.
View Article and Find Full Text PDFRecently, the development of heterogeneous nanocatalytic systems using solid supports has been gaining importance due to some advantages such as easy handling, high thermal stability, high efficiency, reusability, and so on. Therefore, the design of catalyst supports for the preparation of stable heterogeneous catalytic systems is of great importance. In this work, Schiff base-modified ZnO particles have been developed (ZnO-Scb) as a novel support.
View Article and Find Full Text PDFIn this work, a cost-effective, environmentally friendly, and convenient method for synthesizing a novel heterogeneous catalyst via modification of polystyrene using tetrazole-copper magnetic complex [Ps@Tet-Cu(II)@FeO] has been successfully developed. The synthesized complex was analyzed using TEM (transmission electron microscopy), HRTEM (high resolution-transmission electron microscopy), STEM (scanning transmission electron microscopy), FFT (Fast Fourier transform), XRD (X-ray diffraction), FT-IR (Fourier transform-infrared spectroscopy), TG/DTG (Thermogravimetry and differential thermogravimetry), ICP-OES (Inductively coupled plasma-optical emission spectrometry), Vibrating sample magnetometer (VSM), EDS (energy dispersive X-ray spectroscopy), and elemental mapping. N-Sulfonyl-N-aryl tetrazoles were synthesized in high yields from N-sulfonyl-N-aryl cyanamides and sodium azide using Ps@Tet-Cu(II)@FeO nanocatalyst.
View Article and Find Full Text PDFThis study reports a versatile process for the fabrication of a microporous heterogeneous palladium nanocatalyst on a novel spherical, biodegradable, and chemically/physically resistant catalyst support consisting of chitosan (CS) and cigarette waste-derived activated carbon (CAC). The physicochemical properties of the microporous Pd-CS-CAC nanocatalyst developed were successfully determined by FTIR, XRD, FE-SEM, TEM, BET, and EDS techniques. TEM studies showed that the average particle size of the synthesized Pd NPs was about 30 nm.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
May 2024
Extensive use of α-pinene in cosmetics, and medicine, especially for its antioxidant/antibacterial, and anti-cancer properties, and also as a flavoring agent, has made it a versatile product. α-Pinene (one of the two pinene isomers) is the most abundant terpene in nature. When extracting α-pinene from plants and, to a lesser extent, fruits, given that its purity is essential, purification methods should also be used as described in this study.
View Article and Find Full Text PDFEnvironmental pollution is one of the important concerns for human health. There are different types of pollutants and techniques to eliminate them from the environment. We hereby report an efficient method for the remediation of environmental contaminants through the catalytic reduction of the selected pollutants.
View Article and Find Full Text PDFThis study presents an eco-friendly and economical process for preparing a magnetic copper complex conjugated to modified calcium lignosulfonate (LS) through a diamine (FeO@LS@naphthalene-1,5-diamine@copper complex; FLN-Cu) as a green and novel catalyst. The prepared catalyst was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES) and field emission scanning electron microscopy (FESEM) techniques. The photocatalytic performance of the synthesized FLN-Cu catalyst was investigated by the degradation of aqueous solutions of dyes such as Rhodamine B (RhB), methylene blue (MB), and Congo red (CR) under UV irradiation.
View Article and Find Full Text PDFOsteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions.
View Article and Find Full Text PDFIn the present research, a recyclable catalyst has been prepared via a simple approach using chitosan as a linear polysaccharide. This paper reports the synthesis of novel copper(II) complex of 5-phenyl-1H-tetrazole immobilized on magnetic chitosan (MCS@PhTet@Cu(II)) as an effective catalyst. Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and inductively coupled plasma mass spectrometry (ICP-MS) techniques were applied for the characterization of the catalyst.
View Article and Find Full Text PDFA novel heterogeneous catalyst has been developed using chitosan-zeolite supported Pd nanoparticles (PdNPs@CS-Zeo) and used in an efficient synthesis of 5-substituted-1H-tetrazoles from aryl halides with high yields for relatively short reaction times with an easy work-up procedure. In this method, highly effective and reusable PdNPs@CS-Zeo catalyst was used in the reaction of various aryl iodides/bromides with K[Fe(CN)] as a non-toxic cyanide source to catalyze the [2 + 3] cycloaddition of the corresponding aryl nitriles with NaN in the sequential one-pot preparation of 5-substituted-1H-tetrazoles. The synthesized PdNPs@CS-Zeo nanocatalyst was characterized using XRD, FTIR, TEM, HRTEM, XPS, Raman, TG-DTG, ICP-OES, BET, and EDS mapping.
View Article and Find Full Text PDFAdv Colloid Interface Sci
March 2022
Due to the environmental pollution issues and the supply of drinking/clean water, removal of both inorganic and organic (particularly dyes, nitroarenes, and heavy metals) to non-dangerous products and useful compounds are very important transformations. The deployment of sustainable and eco-friendly nanomaterials with exceptional structural and unique features such as high efficiency and stability/recyclability, high surface/volume ratio, low-cost production routes has become a priority; nonetheless, numerous significant challenges/restrictions still remained unresolved. The immobilization of green synthesized metal nanoparticles (NPs) on the natural materials and biowaste generated templates have been analyzed widely as a greener approach due to their environmentally friendly preparation methods, earth-abundance, cost-effectiveness with low energy consumption, biocompatibility, as well as adjustability in various cases of biomolecules as bioreducing agents.
View Article and Find Full Text PDFAn efficient adsorbent was synthesized and used in magnetic dispersive solid phase extraction (MDSPE) of aflatoxins B1, B2, G1, and G2 at trace levels in pistachio prior to analysis by HPLC equipped with a fluorescence detector. Spirulina (Sp) algae was first magnetized, followed by surface modification with dopamine (Dp). The adsorbent was characterized using FT-IR, XRD, FE-SEM, EDX, VSM, and BET analyses.
View Article and Find Full Text PDFHeck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR.
View Article and Find Full Text PDFChromium is a potentially poisonous and carcinogenic species, which originates from human activities and various industries such as leather, steel, iron, and electroplating industries. Chromium is present in various oxidation states, among which hexavalent chromium (Cr(VI)) is highly toxic as a natural contaminant. Therefore, chromium, particularly Cr(VI), must be eliminated from the environment, soil, and water to overcome significant problems due to its accumulation in the environment.
View Article and Find Full Text PDFOver the course of a few decades, the concern of environmental damages of fossil fuels, an increase in CO emission and a decrease of hydrogen have been growing more and more. Accordingly, hydrogen production is a crucial issue nowadays. Different polymers are applied to attain the purpose.
View Article and Find Full Text PDF