Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Radiotherapy is a powerful and widely used technique for the treatment of solid tumors. Beyond its ability to destroy tumor cells, it has been demonstrated that radiotherapy can stimulate the anti-tumor immune response. Unfortunately, this effect is mainly restricted to the irradiated lesion, as tumor control outside the treated field (called the 'abscopal effect') is rarely obtained. In addition, many pro-tumoral factors prevent this anti-tumor immune response from being sustained and efficient. We previously reported that radiotherapy-activated NBTXR3 produced a significant CD8-dependent abscopal effect in immunocompetent mice bearing CT26.WT tumors, while radiotherapy failed to generate such a response.

Methods: To identify the mechanisms that may explain this response, we evaluated the capacity of radiotherapy-activated NBTXR3 to modulate the immunogenicity of tumor cells by analysis of immunogenic cell death biomarkers and immunopeptidome sequencing. In vivo, we analyzed treated tumors for CD4+, CD8 + and CD68 + cell infiltrates by immunohistochemistry and digital pathology and sequenced the T cell receptor (TCR) repertoire in both treated and untreated distant tumors.

Results: We showed that NBTXR3 activated by radiotherapy both increased immunogenic cell death biomarkers and modulated the immunopeptidome profile of CT26.WT cells. Immunohistochemistry analysis of treated tumors revealed a significant increase in CD4+, CD8 + and CD68 + cell infiltrates for NBTXR3 activated by radiotherapy group, compared to radiotherapy. We also measured significant modifications in TCR repertoire diversity in the radiotherapy-activated NBTXR3 group, both in treated and distant untreated tumors, compared to radiotherapy alone.

Conclusions: These results indicate that radiotherapy-activated NBTXR3 can act as an effective immunomodulator, modifying tumor cell immunogenicity and impacting the lymphocyte population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164428PMC
http://dx.doi.org/10.1186/s12935-022-02615-wDOI Listing

Publication Analysis

Top Keywords

radiotherapy-activated nbtxr3
20
tcr repertoire
12
cell immunogenicity
8
tumor cells
8
anti-tumor immune
8
immune response
8
immunogenic cell
8
cell death
8
death biomarkers
8
treated tumors
8

Similar Publications

Purpose: Radiotherapy-activated NBTXR3 (NBTXR3 + RT) has demonstrated superior efficacy in cancer cell destruction and tumor growth control, compared to radiotherapy (RT), in preclinical and clinical settings. Previous studies highlighted the immunomodulatory properties of NBTXR3 + RT, such as modification of tumor cell immunogenicity/adjuvanticity, producing an effective local tumor control and abscopal effect, related to an enhanced antitumor immune response. Furthermore, NBTXR3 + RT has shown potential in restoring anti-PD1 efficacy in a refractory tumor model.

View Article and Find Full Text PDF

Background: Radiotherapy is a powerful and widely used technique for the treatment of solid tumors. Beyond its ability to destroy tumor cells, it has been demonstrated that radiotherapy can stimulate the anti-tumor immune response. Unfortunately, this effect is mainly restricted to the irradiated lesion, as tumor control outside the treated field (called the 'abscopal effect') is rarely obtained.

View Article and Find Full Text PDF

Purpose: The side effects of radiotherapy induced on healthy tissue limit its use. To overcome this issue and fully exploit the potential of radiotherapy to treat cancers, the first-in-class radioenhancer NBTXR3 (functionalized hafnium oxide nanoparticles) has been designed to amplify the effects of radiotherapy.

Patients And Methods: Thanks to its physical mode of action, NBTXR3 has the potential to be used to treat any type of solid tumor.

View Article and Find Full Text PDF

Purpose: Despite tremendous results achieved by immune checkpoint inhibitors, most patients are not responders, mainly because of the lack of a pre-existing anti-tumor immune response. Thus, solutions to efficiently prime this immune response are currently under intensive investigations. Radiotherapy elicits cancer cell death, generating an antitumor-specific T cell response, turning tumors in personalized in situ vaccines, with potentially systemic effects (abscopal effect).

View Article and Find Full Text PDF

The cGAS-STING pathway can be activated by radiation induced DNA damage and because of its important role in anti-cancer immunity activation, methods to increase its activation in cancer cells could provide significant therapeutic benefits for patients. We explored the impact of hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy on cell death, DNA damage, and activation of the cGAS-STING pathway. We demonstrate that NBTXR3 activated by radiotherapy enhances cell destruction, DNA double strand breaks, micronuclei formation and cGAS-STING pathway activation in a human colorectal cancer model, compared to radiotherapy alone.

View Article and Find Full Text PDF