98%
921
2 minutes
20
Background: Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts.
Methods: Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied.
Results: We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit β (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood-brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson's disease patients.
Conclusion: Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164190 | PMC |
http://dx.doi.org/10.1007/s00018-022-04378-z | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
Neurodegener Dis Manag
September 2025
RWE Statistics, KMK Consulting, Inc, North Tower, Morristown, NJ, USA.
Background: Multiple system atrophy (MSA) is a progressive neurodegenerative disorder with diverse symptoms that complicate diagnosis. We aimed to characterize MSA-related symptoms, medications, and healthcare resource utilization (HCRU).
Research Design And Methods: This retrospective cohort study used a large US claims database.
Ann Rheum Dis
September 2025
Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA.
Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.
Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.
Cerebellum
September 2025
Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Multiple system atrophy (MSA) is a progressive, adult-onset neurodegenerative disorder involving autonomic failure, cerebellar ataxia, and parkinsonism. Patients often require invasive interventions, such as gastrostomy or tracheostomy, and sudden death is common. This study aimed to elucidate patterns of invasive treatment and identify risk factors for tracheostomy or sudden death within 5 years of onset.
View Article and Find Full Text PDFJ Neurol
September 2025
Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, 101 Daehakro Jongno-gu, Seoul, 03080, Republic of Korea.
Speech disorders differ between Parkinson's disease (PD) and multiple system atrophy (MSA), but studies focusing on group differences based on syllables or including cerebellar ataxia (CA) are lacking until now. This cross-sectional study aimed to analyze syllable-based speech characteristics in patients with PD, MSA, and CA, as well as healthy controls, to determine their diagnostic utility. Speech samples were collected from 68 PD, 52 MSA, 23 CA, and 70 healthy controls.
View Article and Find Full Text PDF