Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A major route for cell-to-cell signalling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate the plant development and responses to the environment; however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined.

Results: Using the information obtained from experimental proteomes, an analysis pipeline (named plasmodesmata in silico proteome 1 or PIP1) was developed to rapidly generate candidate plasmodesmata proteomes for 22 plant species. Using the in silico proteomes to interrogate published transcriptomes, gene interaction networks were identified pointing to conditions likely affecting plasmodesmata transport capacity. High salinity, drought and osmotic stress regulate the expression of clusters enriched in genes encoding plasmodesmata proteins, including those involved in the metabolism of the cell wall polysaccharide callose. Experimental determinations showed restriction in the intercellular transport of the symplasmic reporter GFP and enhanced callose deposition in Arabidopsis roots exposed to 75-mM NaCl and 3% PEG (polyethylene glycol). Using PIP1 and transcriptome meta-analyses, candidate plasmodesmata proteins for the legume Medicago truncatula were generated, leading to the identification of Medtr1g073320, a novel receptor-like protein that localises at plasmodesmata. Expression of Medtr1g073320 affects callose deposition and the root response to infection with the soil-borne bacteria rhizobia in the presence of nitrate.

Conclusions: Our study shows that combining proteomic meta-analysis and transcriptomic data can be a valuable tool for the identification of new proteins and regulatory mechanisms affecting plasmodesmata function. We have created the freely accessible pipeline PIP1 as a resource for the screening of experimental proteomes and for the in silico prediction of PD proteins in diverse plant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164936PMC
http://dx.doi.org/10.1186/s12915-022-01331-1DOI Listing

Publication Analysis

Top Keywords

plasmodesmata proteins
16
plasmodesmata
13
plant species
12
proteins regulatory
8
diverse plant
8
conditions plasmodesmata
8
plasmodesmata transport
8
silico prediction
8
experimental proteomes
8
candidate plasmodesmata
8

Similar Publications

The arabidopsis WAVE/SCAR protein BRICK1 associates with cell edges and plasmodesmata.

PLoS One

September 2025

Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Canada.

Plasmodesmata are specialized structures in plant cell walls that mediate intercellular communication by regulating the trafficking of molecules between adjacent cells. The actin cytoskeleton plays a pivotal role in controlling plasmodesmatal permeability, but the molecular mechanisms underlying this regulation remain unclear. Here, we report that BRK1, a component of the WAVE/SCAR complex involved in Arp2/3-mediated actin nucleation, localizes to PD and primary pit fields in A.

View Article and Find Full Text PDF

The type III secretion system in Pseudomonas syringae complex pathogens delivers type III effectors (T3Es) into plant cells to manipulate host processes, enhance survival, and promote disease. While substantial research has focused on herbaceous pathogens, T3Es in strains infecting woody hosts are less understood. This study investigates the HopBL family of effectors in Pseudomonas savastanoi, a pathogen of woody plants.

View Article and Find Full Text PDF

Plasmodesmata Wall Biomechanics: Challenges and Opportunities.

J Exp Bot

September 2025

Centre for Plant Sciences, Bragg Centre for Materials Research and The Astbury Centre, School of Biology, University of Leeds, Leeds, LS2 9JT, UK.

Plant cell walls exist as a complex and varied blend of polysaccharides and proteins; the combination of which has evolved over millions of years. Research on how these components interact is key to understanding a plant's mechanical, structural, communicative, and biological traits. However, knowledge on cell wall components, its biophysical properties and cellular functions remains sparse.

View Article and Find Full Text PDF

Plasmodesmata (PD) are highly specialized, nanoscopic pores that traverse the cell wall to connect the cytoplasm of adjacent plant cells, enabling direct cell-to-cell communication. PD provides the continuity of three key cellular components: the plasma membrane, the endoplasmic reticulum (ER), and the cytosol. The compressed ER within PD is known as the desmotubule.

View Article and Find Full Text PDF

Cell-to-cell communication is fundamental to multicellular life. In plants, plasmodesmata-cytoplasmic channels that connect adjacent cells-enable the transport of molecules between cells. In roots, such transport is thought to play a central role in nutrient acquisition and delivery across the multiple cell layers.

View Article and Find Full Text PDF