98%
921
2 minutes
20
Background: A major route for cell-to-cell signalling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate the plant development and responses to the environment; however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined.
Results: Using the information obtained from experimental proteomes, an analysis pipeline (named plasmodesmata in silico proteome 1 or PIP1) was developed to rapidly generate candidate plasmodesmata proteomes for 22 plant species. Using the in silico proteomes to interrogate published transcriptomes, gene interaction networks were identified pointing to conditions likely affecting plasmodesmata transport capacity. High salinity, drought and osmotic stress regulate the expression of clusters enriched in genes encoding plasmodesmata proteins, including those involved in the metabolism of the cell wall polysaccharide callose. Experimental determinations showed restriction in the intercellular transport of the symplasmic reporter GFP and enhanced callose deposition in Arabidopsis roots exposed to 75-mM NaCl and 3% PEG (polyethylene glycol). Using PIP1 and transcriptome meta-analyses, candidate plasmodesmata proteins for the legume Medicago truncatula were generated, leading to the identification of Medtr1g073320, a novel receptor-like protein that localises at plasmodesmata. Expression of Medtr1g073320 affects callose deposition and the root response to infection with the soil-borne bacteria rhizobia in the presence of nitrate.
Conclusions: Our study shows that combining proteomic meta-analysis and transcriptomic data can be a valuable tool for the identification of new proteins and regulatory mechanisms affecting plasmodesmata function. We have created the freely accessible pipeline PIP1 as a resource for the screening of experimental proteomes and for the in silico prediction of PD proteins in diverse plant species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9164936 | PMC |
http://dx.doi.org/10.1186/s12915-022-01331-1 | DOI Listing |
PLoS One
September 2025
Department of Biology, The University of Saskatchewan, College of Arts and Science, Saskatoon, Canada.
Plasmodesmata are specialized structures in plant cell walls that mediate intercellular communication by regulating the trafficking of molecules between adjacent cells. The actin cytoskeleton plays a pivotal role in controlling plasmodesmatal permeability, but the molecular mechanisms underlying this regulation remain unclear. Here, we report that BRK1, a component of the WAVE/SCAR complex involved in Arp2/3-mediated actin nucleation, localizes to PD and primary pit fields in A.
View Article and Find Full Text PDFMol Plant Pathol
September 2025
Área de Genética, Facultad de Ciencias, Campus Teatinos s/n, Universidad de Málaga, Málaga, Spain.
The type III secretion system in Pseudomonas syringae complex pathogens delivers type III effectors (T3Es) into plant cells to manipulate host processes, enhance survival, and promote disease. While substantial research has focused on herbaceous pathogens, T3Es in strains infecting woody hosts are less understood. This study investigates the HopBL family of effectors in Pseudomonas savastanoi, a pathogen of woody plants.
View Article and Find Full Text PDFJ Exp Bot
September 2025
Centre for Plant Sciences, Bragg Centre for Materials Research and The Astbury Centre, School of Biology, University of Leeds, Leeds, LS2 9JT, UK.
Plant cell walls exist as a complex and varied blend of polysaccharides and proteins; the combination of which has evolved over millions of years. Research on how these components interact is key to understanding a plant's mechanical, structural, communicative, and biological traits. However, knowledge on cell wall components, its biophysical properties and cellular functions remains sparse.
View Article and Find Full Text PDFCurr Protoc
August 2025
Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa.
Plasmodesmata (PD) are highly specialized, nanoscopic pores that traverse the cell wall to connect the cytoplasm of adjacent plant cells, enabling direct cell-to-cell communication. PD provides the continuity of three key cellular components: the plasma membrane, the endoplasmic reticulum (ER), and the cytosol. The compressed ER within PD is known as the desmotubule.
View Article and Find Full Text PDFMol Plant
August 2025
Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland. Electronic address:
Cell-to-cell communication is fundamental to multicellular life. In plants, plasmodesmata-cytoplasmic channels that connect adjacent cells-enable the transport of molecules between cells. In roots, such transport is thought to play a central role in nutrient acquisition and delivery across the multiple cell layers.
View Article and Find Full Text PDF