Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The airway epithelium of children with asthma is characterized by aberrant repair that may be therapeutically modifiable. The development of epithelial-targeting therapeutics that enhance airway repair could provide a novel treatment avenue for childhood asthma. Drug discovery efforts utilizing high-throughput live cell imaging of patient-derived airway epithelial culture-based wound repair assays can be used to identify compounds that modulate airway repair in childhood asthma. Manual cell tracking has been used to determine cell trajectories and wound closure rates, but is time consuming, subject to bias, and infeasible for high-throughput experiments. We therefore developed software, EPIC, that automatically tracks low-resolution low-framerate cells using artificial intelligence, analyzes high-throughput drug screening experiments and produces multiple wound repair metrics and publication-ready figures. Additionally, unlike available cell trackers that perform cell segmentation, EPIC tracks cells using bounding boxes and thus has simpler and faster training data generation requirements for researchers working with other cell types. EPIC outperformed publicly available software in our wound repair datasets by achieving human-level cell tracking accuracy in a fraction of the time. We also showed that EPIC is not limited to airway epithelial repair for children with asthma but can be applied in other cellular contexts by outperforming the same software in the Cell Tracking with Mitosis Detection Challenge (CTMC) dataset. The CTMC is the only established cell tracking benchmark dataset that is designed for cell trackers utilizing bounding boxes. We expect our open-source and easy-to-use software to enable high-throughput drug screening targeting airway epithelial repair for children with asthma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9146422PMC
http://dx.doi.org/10.3390/jpm12050809DOI Listing

Publication Analysis

Top Keywords

cell tracking
20
airway epithelial
16
children asthma
16
high-throughput drug
12
drug screening
12
epithelial repair
12
repair children
12
wound repair
12
cell
10
repair
9

Similar Publications

Replication-competent adenovirus reporters utilizing endogenous viral expression architecture.

J Virol

September 2025

Genome Regulation and Cell Signaling, Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.

Unlabelled: Adenoviruses are double-stranded DNA viruses widely used as platforms for vaccines, oncolytics, and gene delivery. However, tools for studying adenoviral gene expression in real time during infection remain limited. Here, we describe a set of fluorescent and bioluminescent reporter viruses built using the modular AdenoBuilder reverse genetics system and informed by high-resolution maps of Ad5 transcription.

View Article and Find Full Text PDF

Biosensors for Detecting Small Rho GTPases: Monitoring Expression and Activation.

Bioessays

September 2025

MY Small G Protein Research Group, Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia.

Advanced biosensing technologies, such as Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET), have enabled real-time, high-resolution tracking of Rho GTPase activity, surpassing traditional methods like pull-down assays. However, current biosensors mainly detect the GTP-bound active state through effector interactions, without directly measuring Rho GTPase expression or identifying related biomarkers of abnormal activation. Small Rho GTPases are essential molecular switches that regulate key cellular processes such as cytoskeletal organization, cell movement, polarity, vesicle trafficking, and the cell cycle.

View Article and Find Full Text PDF

Tropomyosin is an actin-binding protein (ABP) which protects actin filaments from cofilin-mediated disassembly. Distinct tropomyosin isoforms have long been hypothesized to differentially sort to subcellular actin networks and impart distinct functionalities. Nevertheless, a mechanistic understanding of the interplay between Tpm isoforms and their functional contributions to actin dynamics has been lacking.

View Article and Find Full Text PDF

Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.

View Article and Find Full Text PDF

Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.

View Article and Find Full Text PDF