Applications of Photodynamic Therapy in Endometrial Diseases.

Bioengineering (Basel)

Institute of Biophysics and Institute for Clinical and Biomedical Research (iCBR), Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photodynamic therapy (PDT) is a medical procedure useful for several benign conditions (such as wound healing and infections) and cancer. PDT is minimally invasive, presents few side effects, good scaring, and is able to minimal tissue destruction maintaining organ anatomy and function. Endoscopic access to the uterus puts PDT in the spotlight for endometrial disease treatment. This work systematically reviews the current evidence of PDT's potential and usefulness in endometrial diseases. Thus, this narrative review focused on PDT applications for endometrial disease, including reports regarding in vitro, ex vivo, animal, and clinical studies. Cell lines and primary samples were used as in vitro models of cancer, adenomyosis and endometrioses, while most animal studies focused the PDT outcomes on endometrial ablation. A few clinical attempts are known using PDT for endometrial ablation and cancer lesions. This review emphasises PDT as a promising field of research. This therapeutic approach has the potential to become an effective conservative treatment method for endometrial benign and malignant lesions. Further investigations with improved photosensitisers are highly expected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138084PMC
http://dx.doi.org/10.3390/bioengineering9050226DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
endometrial diseases
8
endometrial disease
8
focused pdt
8
endometrial ablation
8
endometrial
7
pdt
7
applications photodynamic
4
therapy endometrial
4
diseases photodynamic
4

Similar Publications

Multi-Enzymatic Cascade Catalysis in Photodynamic Nanozymes for Augmenting Radiotherapy of Breast Cancer.

Adv Healthc Mater

September 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.

Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.

View Article and Find Full Text PDF

Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.

View Article and Find Full Text PDF

Enzymatic and mechanical disruption before successive photodynamic therapy targets the extracellular matrix of Candida albicans.

Photodiagnosis Photodyn Ther

September 2025

Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de Araraquara, Araraquara, SP, Brazil. Electronic address:

Objective: To evaluate whether pretreatment strategies targeting the extracellular matrix (ECM), such as DNase I and low-frequency ultrasound, enhance the efficacy of successive antimicrobial photodynamic therapy (aPDT) against Candida albicans biofilms and to assess the effects on biofilm components.

Methods: Forty-eight-hour C. albicans (ATCC 90028) biofilms were treated under four conditions: (I) aPDT [Photodithazine (PDZ) (25 mg/L) for 20 min + Light-Emitting Diode (LED) (660 nm, 18 J/cm²)], (II) DNase+aPDT [5 min with 20 U/mL DNase I before aPDT], (III) sonication+aPDT [7 W, 170-190 J before aPDT], (IV) Dn+So+aPDT.

View Article and Find Full Text PDF

One of the key factors contributing to the poor prognosis of glioblastoma is the treatment resistance of glioma stem cells (GSCs). In this study, the efficacy of photodynamic therapy (PDT) using talaporfin sodium (NPe6), a second-generation photosensitizer, in combination with a semiconductor laser approved for clinical use in Japan was evaluated. The evaluation was performed in a patient-derived glioma stem cell (GSC) line, MGG8, which was established from human glioblastoma tissue.

View Article and Find Full Text PDF