98%
921
2 minutes
20
Photodynamic therapy (PDT) is a medical procedure useful for several benign conditions (such as wound healing and infections) and cancer. PDT is minimally invasive, presents few side effects, good scaring, and is able to minimal tissue destruction maintaining organ anatomy and function. Endoscopic access to the uterus puts PDT in the spotlight for endometrial disease treatment. This work systematically reviews the current evidence of PDT's potential and usefulness in endometrial diseases. Thus, this narrative review focused on PDT applications for endometrial disease, including reports regarding in vitro, ex vivo, animal, and clinical studies. Cell lines and primary samples were used as in vitro models of cancer, adenomyosis and endometrioses, while most animal studies focused the PDT outcomes on endometrial ablation. A few clinical attempts are known using PDT for endometrial ablation and cancer lesions. This review emphasises PDT as a promising field of research. This therapeutic approach has the potential to become an effective conservative treatment method for endometrial benign and malignant lesions. Further investigations with improved photosensitisers are highly expected.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9138084 | PMC |
http://dx.doi.org/10.3390/bioengineering9050226 | DOI Listing |
Curr Med Chem
September 2025
School of Pharmacy and Medical Technology, Putian University, Fujian Province, China.
Adv Healthc Mater
September 2025
State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.
View Article and Find Full Text PDFPhotochem Photobiol
September 2025
Photobiology Applied to Health (PhotoBioS Lab), University of Vale do Paraíba, São Paulo, Brazil.
Gliomas are malignant tumors of the central nervous system, and one severe variant is called gliosarcoma. Photodynamic therapy (PDT) is a technique that stands out in the oncology area for minimizing side effects for the patient, triggering cell death at the site of irradiation, and can be used concomitantly with conventional treatments. This study aimed to evaluate the interaction of chlorine e6 with the cytoskeleton and mitochondria, as well as morphological changes and the death mechanism triggered after PDT.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2025
Laboratory of Applied Microbiology Department of Dental Materials and Prosthodontics, Universidade Estadual Paulista "Júlio de Mesquita Filho", Faculdade de Odontologia de Araraquara, Araraquara, SP, Brazil. Electronic address:
Objective: To evaluate whether pretreatment strategies targeting the extracellular matrix (ECM), such as DNase I and low-frequency ultrasound, enhance the efficacy of successive antimicrobial photodynamic therapy (aPDT) against Candida albicans biofilms and to assess the effects on biofilm components.
Methods: Forty-eight-hour C. albicans (ATCC 90028) biofilms were treated under four conditions: (I) aPDT [Photodithazine (PDZ) (25 mg/L) for 20 min + Light-Emitting Diode (LED) (660 nm, 18 J/cm²)], (II) DNase+aPDT [5 min with 20 U/mL DNase I before aPDT], (III) sonication+aPDT [7 W, 170-190 J before aPDT], (IV) Dn+So+aPDT.
Photodiagnosis Photodyn Ther
September 2025
Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
One of the key factors contributing to the poor prognosis of glioblastoma is the treatment resistance of glioma stem cells (GSCs). In this study, the efficacy of photodynamic therapy (PDT) using talaporfin sodium (NPe6), a second-generation photosensitizer, in combination with a semiconductor laser approved for clinical use in Japan was evaluated. The evaluation was performed in a patient-derived glioma stem cell (GSC) line, MGG8, which was established from human glioblastoma tissue.
View Article and Find Full Text PDF