98%
921
2 minutes
20
Heveins and hevein-containing (hev-) lectins play important roles in stress and pathogenic responses in plants but cause health concerns in humans. Hev-hololectins contain multiple modular hev-peptide domains and are abundantly present in cereals and pseudocereals. However, it is unclear why some cereal hev-hololectins are presented as different forms of proteolytically processed proteoforms. Here we show the precursor architectures of hev-hololectins lead to different processing mechanisms to give either hololectins or hevein-like peptides. We used mass spectrometry and datamining to screen hev-peptides from common cereals, and identified from the oat plant nine novel hevein-like peptides, avenatide aV1-aV9. Bioinformatic analysis revealed that asparaginyl endopeptidase (AEP) can be responsible for the maturation of the highly homologous avenatides from five oat hev-hololectin precursors, each containing four tandemly repeating, hev-like avenatide domains connected by AEP-susceptible linkers with 13-16 residues in length. Further analysis of cereal hev-hololectins showed that the linker lengths provide a distinguishing feature between their cleavable and non-cleavable precursors, with the cleavables having considerably longer linkers (>13 amino acids) than the non-cleavables (<6 amino acids). A detailed study of avenatide aV1 revealed that it contains eight cysteine residues which form a structurally compact, metabolic-resistant cystine-knotted framework with a well-defined chitin-binding site. Antimicrobial assays showed that avenatide aV1 is anti-fungal and inhibits the growth of phyto-pathogenic fungi. Together, our findings of cleavable and non-cleavable hololectins found in cereals expand our knowledge to their biosynthesis and provide insights for hololectin-related health concerns in human.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9127739 | PMC |
http://dx.doi.org/10.3389/fpls.2022.899740 | DOI Listing |
Cell Surf
June 2025
Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
As dynamic interfaces governing molecular recognition and signal transduction, interactions between plants and microbes fundamentally shape ecosystem dynamics and evolutionary trajectories. This review summarizes peptides involved in plant-microbe interactions, emphasizing their diversity, biological functions mediated at the cell surface, pharmacological applications, and recent methodological advances in their discovery. Plant-derived peptides, including cysteine-rich peptides (NCRs, RALFs, DEFs, nsLTPs) and post-translationally modified peptides (CLEs, CEPs, GLV/RGF, PSKs), regulate symbiotic relationships and plant defenses.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
December 2024
Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
Curr Microbiol
August 2024
Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
With the emergence of multidrug-resistant microorganisms, microbial agents have become a serious global threat, affecting human health and various plants. Therefore, new therapeutic alternatives, such as chitin-binding proteins, are necessary. Chitin is an essential component of the fungal cell wall, and chitin-binding proteins exhibit antifungal activity.
View Article and Find Full Text PDFMolecules
September 2023
Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
Coffee processing generates a huge amount of waste that contains many natural products. Here, we report the discovery of a panel of novel cell-penetrating and metal ion-binding microproteins designated coffeetide cC1a-c and cL1-6 from the husk of two popular coffee plants, and , respectively. Combining sequence determination and a database search, we show that the prototypic coffeetide cC1a is a 37-residue, eight-cysteine microprotein with a hevein-like cysteine motif, but without a chitin-binding domain.
View Article and Find Full Text PDFCurr Issues Mol Biol
April 2023
Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia.
Antimicrobial peptides (AMPs) are short polypeptide molecules produced by multicellular organisms that are involved in host defense and microbiome preservation. In recent years, AMPs have attracted attention as novel drug candidates. However, their successful use requires detailed knowledge of the mode of action and identification of the determinants of biological activity.
View Article and Find Full Text PDF