98%
921
2 minutes
20
Photoinduced atom transfer radical polymerization (ATRP) has been proved to be a versatile technique for polymer network formation. However, the slow polymerization rates of typical ATRP limited its application in the field of additive manufacturing (3D printing). In this work, we introduced carbon quantum dots (CQDs) for the first time to the ATRP in aqueous media and developed an ultrafast visible-light-induced polymerization system. After optimization, the polymerization could achieve a high monomer conversion (>90%) within 1 min, and the polydispersity index (PDI) of the polymer was lower than 1.25. This system was then applied as the first example of ATRP for the 3D printing of hydrogel through digital light processing (DLP), and the printed object exhibited good dimensional accuracy. Additionally, the excellent and stable optical properties of CQDs also provided interesting photoluminescence capabilities to the printed objects. We deduce this ATRP mediated 3D printing process would provide a new platform for the preparation of functional and stimuli-responsive hydrogel materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c02303 | DOI Listing |
Acc Chem Res
August 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, 1, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai, 400005, India.
ConspectusVisible-light-mediated photoredox catalysis, rejuvenated by David MacMillan in 2008 following the early work by Richard Kellogg and Shunichi Fukuzumi on photosensitized reactions, has been used as an efficient strategy to carry out complex organic synthesis under mild reaction conditions. The main motivation for using visible-light during selective photoredox transformations is to minimize the use of high-energy and chemically disruptive UV-photons, thereby mimicking natural photosynthesis. Transition metal-based photosensitizers with substantial visible-light absorption cross sections and long triplet excited-state lifetimes have been successfully used to efficiently drive such light-mediated chemical transformations in organic solvents.
View Article and Find Full Text PDFACS Omega
February 2024
Institute of Chemistry, Theoretical Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.
Assemblies of photochromic molecules feature exciton states, which govern photochemical and photophysical processes in multichromophoric systems. Understanding the photoinduced dynamics of the assemblies requires nonadiabatic treatment involving multiple exciton states and numerous nuclear degrees of freedom, thus posing a challenge for simulations. In this work, we address this challenge for aggregates of azobenzene, a prototypical molecular switch, performing on-the-fly surface hopping calculations combined with semiempirical configuration interaction electronic structure and augmented with transition density matrix analysis to characterize exciton evolution.
View Article and Find Full Text PDFJ Am Chem Soc
June 2022
Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
Photoinduced atom transfer radical polymerization (ATRP) has been proved to be a versatile technique for polymer network formation. However, the slow polymerization rates of typical ATRP limited its application in the field of additive manufacturing (3D printing). In this work, we introduced carbon quantum dots (CQDs) for the first time to the ATRP in aqueous media and developed an ultrafast visible-light-induced polymerization system.
View Article and Find Full Text PDFJ Phys Chem Lett
July 2020
Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.
Developments in the field of photoredox catalysis that leveraged the long-lived excited states of Ir(III) and Ru(II) photosensitizers to enable radical coupling processes paved the way for explorations of synthetic transformations that would otherwise remain unrealized. While first row transition metal photocatalysts have not been as extensively investigated, valuable synthetic transformations covering broad scopes of olefin functionalization have been recently reported featuring photoactivated chlorobis(phenanthroline) Cu(II) complexes. In this study, the photochemical processes underpinning the catalytic activity of [Cu(dmp)Cl]Cl (dmp = 2,9-dimethyl-1,10-phenanthroline) were studied.
View Article and Find Full Text PDFJ Chem Theory Comput
July 2020
Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina.
The increasing need to simulate the dynamics of photoexcited molecular systems and nanosystems in the subpicosecond regime demands new efficient tools able to describe the quantum nature of matter at a low computational cost. By combining the power of the approximate DFTB method with the semiclassical Ehrenfest method for nuclear-electron dynamics, we have achieved a real-time time-dependent DFTB (TD-DFTB) implementation that fits such requirements. In addition to enabling the study of nuclear motion effects in photoinduced charge transfer processes, our code adds novel features to the realm of static and time-resolved computational spectroscopies.
View Article and Find Full Text PDF