Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Self-assembly of amphiphilic block copolymers into well-defined nanostructures as drug delivery systems for the treatment of cancer has been a hot subject of research. However, sequential polymerizations synthesized amphiphilic block copolymers with covalent links suffered mainly from multistep synthesis and purification procedures as well as repeated optimization of polymer composition to form aggregates with well-defined structures. To overcome these drawbacks, supramolecular amphiphilic block copolymers with noncovalent links were developed to provide simplicity as required. Herein, we designed and prepared a reducible β-cyclodextran (β-CD)-ferrocene (Fc) double-head unit from which a dual-redox responsive supramolecular amphiphilic copolymer was fabricated together with a traditional polymer block through supramolecular induced polymerization. Typically, well-defined supramolecular micelles and vesicles were fabricated, respectively. Due to the integration of oxidation-sensitive noncovalent β-CD/Fc connections and reduction-sensitive covalent disulfide bridges in the polymer backbone, the resulting supramolecular micelles and vesicles showed structural deformation and accelerated drug release in response to both intracellular reducing and oxidizing environments, thus, presenting a new platform for both reactive oxygen species (ROS) and glutathione (GSH)-triggered anticancer drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.6b00450 | DOI Listing |