Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A kinetic study of the hydrogen atom transfer (HAT) reactions from nitrogen-containing heterocycles (secondary and tertiary lactams, 2-imidazolidinones, 2-oxazolidinones, and succinimides) to the cumyloxyl radical has been carried out employing laser flash photolysis with ns time resolution. HAT occurs from the C-H bonds that are α to nitrogen, activated by hyperconjugative overlap with the N-C═O π system. In the lactam series, the second-order HAT rate constant () was observed to decrease by a factor of ∼4 going from the five- and six-membered ring derivatives to the eight-membered ones, a behavior that was rationalized on the basis of a reduced extent of hyperconjugative activation associated to the greater flexibility of the larger rings compared to the smaller ones. In the five-membered-ring substrate series, the values were observed to increase by >3 orders of magnitude on going from succinimide to 2-imidazolidinones, a behavior that was explained in terms of the divergent contribution of hyperconjugative activation and deactivating electronic effects determined by ring functionalities. The results are discussed in the framework of the development of HAT-based C-H bond functionalization procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171822PMC
http://dx.doi.org/10.1021/acs.joc.2c00955DOI Listing

Publication Analysis

Top Keywords

hydrogen atom
8
atom transfer
8
nitrogen-containing heterocycles
8
cumyloxyl radical
8
hyperconjugative activation
8
factors governing
4
governing reactivity
4
reactivity selectivity
4
selectivity hydrogen
4
transfer csp-h
4

Similar Publications

Catalysis of Radical Coupling Reaction via Synergistic Action of Oriented External Electric Field and Light Irradiation.

Angew Chem Int Ed Engl

September 2025

Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China.

Radical coupling reactions have been widely used in the synthesis of complex organic molecules, materials science, and drug research. However, restricted conditions or special catalysts are required to overcome the energy barrier and trigger the coupling reaction efficiently. In this study, we provide experimental evidence that the C─N radical coupling reactions can be significantly accelerated by an oriented external electric field (OEEF) under synchronous UV irradiation without a catalyst.

View Article and Find Full Text PDF

Phosphorus(V)-centered porphyrins (P(V)-porphyrins) are an important class of functional dyes in many fields of research, and axial ligands on the phosphorus atom affect the electronic properties of P(V)-porphyrins and add functions. Herein, we report on the synthesis and characterization of a hitherto unknown P(V)-porphyrin having hydrogen atoms as axial ligands (1·PF , PF is a counter anion). Synthesis of 1·PF was achieved by treatment of dichloro-derivative (2·Cl) with LiAlH followed by AgPF via hydride reduction accompanied by one-electron reduction and one-electron oxidation.

View Article and Find Full Text PDF

In ammonia synthesis, a new reaction system that does not use hydrogen (H) as a raw material, such as the plasma/liquid (P/L) reaction, contributes to creating a sustainable chemical industry. The P/L reaction is intended to abstract hydrogen atoms from water molecules to synthesize ammonia under ambient conditions without any catalysts but using electrically activated nitrogen species in the plasma. Therefore, the energy transfer process leading to nitrogen activation is key to the P/L reaction.

View Article and Find Full Text PDF

Recent advances in the construction of quaternary pseudoanomeric centers in ,-glycosides: from zaragozic acids to remdesivir.

Org Biomol Chem

September 2025

Laboratoire d'Innovation Moléculaire et Applications (LIMA), Univ. de Strasbourg, Univ. de Haute-Alsace, CNRS (UMR 7042), Equipe de Synthèse Organique et Molécules Bioactives (SYBIO), ECPM, 25 Rue Becquerel, 67000 Strasbourg, France.

,-glycosides--glycosides characterized by two carbon substituents at the pseudo-anomeric position-constitute a structurally distinctive class of glycomimetics with growing relevance in natural products and drug discovery. These motifs appear in diverse bioactive compounds such as maitotoxin, nogalamycins, zaragozic acids and remdesivir, displaying antimicrobial, anti-inflammatory, and anticancer properties. The unique architectures of ,-glycosides expand the glycochemical space and hold promise for therapeutic development.

View Article and Find Full Text PDF

Herein we first reported an attractive example of visible-light-induced three-component alkylation of 1,3,4-oxadiazoles 1,5-hydrogen atom transfer. A broad range of 1,3,4-oxadiazoles, hydroxamic acid derivatives and alkenes were successfully transformed into the corresponding products in satisfactory yields. The reaction is characterized by mild reaction conditions, good functional group compatibility, broad substrate scope, and simple operation procedure.

View Article and Find Full Text PDF