98%
921
2 minutes
20
Since their discovery, CRISPR/Cas systems have been extensively exploited in nucleic acid biosensing. However, the vast majority of contemporary platforms offer only qualitative detection of nucleic acid, and fail to realize ultrasensitive quantitative detection. Herein, we report a digital droplet-based platform (DropCRISPR), which combines loop-mediated isothermal amplification (LAMP) with CRISPR/Cas12a to realize ultrasensitive and quantitative detection of nucleic acids. This is achieved through a novel two-step microfluidic system which combines droplet LAMP with a picoinjector capable of injecting the required CRISPR/Cas12a reagents into each droplet. This method circumvents the temperature incompatibilities of LAMP and CRISPR/Cas12a and avoids mutual interference between amplification reaction and CRISPR detection. Ultrasensitive detection (at fM level) was achieved for a model plasmid containing the invA gene of Salmonella typhimurium (St), with detection down to 10 cfu/mL being achieved in pure bacterial culture. Additionally, we demonstrate that the DropCRISPR platform is capable of detecting St in raw milk samples without additional nucleic acid extraction. The sensitivity and robustness of the DropCRISPR further demonstrates the potential of CRISPR/Cas-based diagnostic platforms, particularly when combined with state-of-the-art microfluidic architectures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2022.114377 | DOI Listing |
Photochem Photobiol Sci
September 2025
Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.
The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.
View Article and Find Full Text PDFNature
September 2025
Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
Monogenic lupus offers valuable insights into the underlying mechanisms and therapeutic approaches for systemic lupus erythematosus (SLE). Here we report on five patients with SLE carrying recessive mutations in phospholipase D family member 4 (PLD4). Deleterious variants in PLD4 resulted in impaired single-stranded nucleic acid exonuclease activity in in vitro and ex vivo assays.
View Article and Find Full Text PDFMicrobes Environ
September 2025
Sustainable Process Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya.
Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.
View Article and Find Full Text PDFSci Justice
September 2025
College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia.
DNA transfer events have been well researched in the context of commonly found items at crime scenes. However, whilst animals are a common feature of most households, transfer events involving companion animals have been understudied. Recent research has shown that dogs and cats are a reservoir of human DNA that can transfer to a hand or sterile object after a short contact.
View Article and Find Full Text PDFSci Justice
September 2025
Department of Chemistry and Forensic Science, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475, United States. Electronic address:
Traditionally, when processing DNA samples, a multiple-step procedure is followed; after a sample has been collected, DNA is then extracted and quantified before a profile is generated. During the process, valuable DNA can be lost and/or consumed. When processing reference samples, where DNA is usually in abundance, DNA loss may not be a concern for the analysts.
View Article and Find Full Text PDF