98%
921
2 minutes
20
Contractility is one of the most crucial functions of the heart because it is directly related to the maintenance of blood perfusion throughout the body. Both increase and decrease in contractility may cause fatal consequences. Therefore, drug discovery would benefit greatly from reliable testing of candidate molecule effects on contractility capacity. In this study, we further developed a dual-axis piezoelectric force sensor together with our human cell-based vascularized cardiac tissue constructs for cardiac contraction force measurements. The capability to detect drug-induced inotropic effects was tested with a set of known positive and negative inotropic compounds of isoprenaline, milrinone, omecamtiv mecarbil, propranolol, or verapamil in different concentrations. Both positive and negative inotropic effects were measurable, showing that our cardiac contraction force measurement system including a piezoelectric cantilever sensor and a human cell-based cardiac tissue constructs has the potential to be used for testing of inotropic drug effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110810 | PMC |
http://dx.doi.org/10.3389/fphar.2022.871569 | DOI Listing |
Eur J Neurol
September 2025
Department of Neurology and Center for Translational and Behavioral Neurosciences, University Medicine Essen, University of Duisburg-Essen, Essen, Germany.
Background: Changes in handgrip strength have recently been adapted as clinical biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) under the assumption of a disease-specific peripheral neuromuscular dysfunction. However, some have proposed that strength impairments in ME/CFS are better explained by alterations in higher-order motor control. In serial measurements, exertion can been assessed through analysis of variation, since maximal voluntary contractions exhibit lower coefficients of variation (CV) than submaximal contractions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
Improving electrostrain in lead-free piezoelectric materials is critical for practical use. This study examines KTN crystals and employs two primary strategies to enhance their electrostrain: (1) Cu doping creates a restoring force enabling reversible domain switching. (2) Polarizing Cu:KTN crystals and applying an electric field perpendicular to the polarization direction ensure that all domains contribute to the strain.
View Article and Find Full Text PDFZhonghua Yan Ke Za Zhi
September 2025
Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.
To explore the effects of aging on the stiffness of human scleral fibroblast (HSF) and the remodeling of the extracellular matrix. This experimental study was conducted from January 2022 to June 2024. HSFs were cultured, and after cell passage, β-galactosidase staining was conducted.
View Article and Find Full Text PDFAdv Physiol Educ
September 2025
School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
Langmuir
September 2025
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
In the stable cone-jet regime, liquid usually presents the shape of a cone extended by a jet at its apex, with jet breakup yielding fine drops. The dynamics of the Taylor cone critically affect the stability of the jet and further determine the jet and/or drop size. In the present work, the morphology of the Taylor cone, cone length, and cone angle were studied through experimental and numerical means, where the operating parameters and liquid properties are considered.
View Article and Find Full Text PDF