MYC inhibitors in multiple myeloma.

Cancer Drug Resist

Preclinical & Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona 08035, Spain.

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as ), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8992455PMC
http://dx.doi.org/10.20517/cdr.2021.55DOI Listing

Publication Analysis

Top Keywords

multiple myeloma
8
myc
5
myc inhibitors
4
inhibitors multiple
4
myeloma myc
4
myc function
4
function cancer
4
cancer discovered
4
discovered late
4
late 1970s
4

Similar Publications

Inflammatory gene expression profile of oral plasmablastic lymphoma.

Virchows Arch

September 2025

Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Av. Antônio Carlos, Pampulha, Belo Horizonte, 31270-901, Brazil.

Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma with a poor prognosis and short survival rates. It is classified as a large B-cell lymphoma subtype, but carries a plasmacytic immunophenotype. Therefore, PBL has pathogenetic overlaps with diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) and plasma cell neoplasms (PCNs).

View Article and Find Full Text PDF

We herein report two cases of immunotactoid glomerulopathy (ITG) associated with multiple myeloma treated with daratumumab-based regimens. The first patient was an 81-year-old woman with severe renal insufficiency and IgAκ multiple myeloma (MM) that progressed to end-stage renal disease despite administering daratumumab-based therapy. The second patient, a 69-year-old man with smoldering MM, showed a favorable response to daratumumab-based treatment, with a resolution of nephrotic proteinuria.

View Article and Find Full Text PDF

Background: BCMA-directed chimeric antigen receptor (CAR)-T cell therapy represents a major therapeutic breakthrough for relapsed/refractory multiple myeloma (RRMM), offering deep and durable responses in heavily pretreated patients. However, a subset of patients experience early relapse or fail to respond, highlighting the need for strategies to enhance efficacy. Gamma-secretase inhibitors (GSIs) have been shown to increase surface BCMA expression on malignant plasma cells and may potentiate the activity of BCMA CAR-T cells, particularly in patients with low baseline BCMA antigen density.

View Article and Find Full Text PDF