Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many plants, including Arabidopsis (Arabidopsis thaliana), accumulate starch in the daytime and remobilize it to support maintenance and growth at night. Starch accumulation is increased when carbon is in short supply, for example, in short photoperiods. Mobilization is paced to exhaust starch around dawn, as anticipated by the circadian clock. This diel pattern of turnover is largely robust against loss of day, dawn, dusk, or evening clock components. Here, we investigated diel starch turnover in the triple circadian clock mutant lhy cca1 elf3, which lacks the LATE ELONGATED HYPOCOTYL and the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1) dawn components and the EARLY FLOWERING3 (ELF3) evening components of the circadian clock. The diel oscillations of transcripts for the remaining clock components and related genes like REVEILLE and PHYTOCHROME-INTERACING FACTOR family members exhibited attenuated amplitudes and altered peak time, weakened dawn dominance, and decreased robustness against changes in the external light-dark cycle. The triple mutant was unable to increase starch accumulation in short photoperiods. However, it was still able to pace starch mobilization to around dawn in different photoperiods and growth irradiances and to around 24 h after the previous dawn in T17 and T28 cycles. The triple mutant was able to slow down starch mobilization after a sudden low-light day or a sudden early dusk, although in the latter case it did not fully compensate for the lengthened night. Overall, there was a slight trend to less linear mobilization of starch. Thus, starch mobilization can be paced rather robustly to dawn despite a major disruption of the transcriptional clock. It is proposed that temporal information can be delivered from clock components or a semi-autonomous oscillator.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348821PMC
http://dx.doi.org/10.1093/plphys/kiac226DOI Listing

Publication Analysis

Top Keywords

circadian clock
20
starch mobilization
16
clock components
12
starch
10
clock mutant
8
mutant lhy
8
lhy cca1
8
cca1 elf3
8
dawn
8
mobilization dawn
8

Similar Publications

In many model organisms, the circadian system has been proposed to comprise multiple oscillators that interact to promote accuracy of the clock as well as intricacies of rhythmic outputs. In Neurospora crassa, the circadian transcriptional/translational loop comprising of the FRQ (Frequency) and WCC (White Collar Complex) proteins has been instrumental in explaining many attributes of the clock including entrainment and rhythms in development and gene expression; in addition, some non-circadian oscillations can be unmasked when the FRQ-WCC feedback loop is eliminated. These rhythms have often lost defining circadian characteristics and are potentially controlled by other oscillators, termed FRQ-less oscillators (FLOs) in Neurospora.

View Article and Find Full Text PDF

Nobiletin Alleviates Npy1r-Mediated Insulin Secretion Deficiency of Islet β-Cells via the Clock-Modulatory Signaling.

Mol Nutr Food Res

September 2025

Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.

Current research indicates that insulin secretion deficiency in β-cells contributes to Type 2 diabetes mellitus (T2DM), which is associated with neuropeptide Y receptor (Npy1r) overexpression from neuropeptide Y (NPY) system dysregulation. To date, limited literature has explored nobiletin (NOB) as a circadian modulator for restoring β-cell function through Npy1r regulation. This study investigates NOB's stimulatory effects on insulin secretion via Npy1r and clock-modulatory signaling to elucidate its underlying mechanism.

View Article and Find Full Text PDF

Aim: Autoimmune diseases, characterized by the immune system mistakenly attacking the body's own tissues, are a growing global concern, with increasing prevalence. The circadian clock is a fundamental regulator of physiological processes, critically modulating immune functions. This review explores the intricate connections between circadian rhythms and immune responses in autoimmune pathogenesis and how disruptions exacerbate disease.

View Article and Find Full Text PDF

Background And Aim: The circadian rhythm regulates various physiological processes, including sleep-wake cycle, cell division and cancer development. This study aimed to investigate circadian rhythm patterns in cancer patients.

Methods: In this cross-sectional study, 150 cancer patients admitted to the hospital enrolled the study during the fall of 2022.

View Article and Find Full Text PDF

Acute circadian misalignment, such as that induced by a single episode of jet lag, can leave molecular traces even after behavioral rhythms appear to recover. Here, we applied an integrated multi-omics approach-combining liver transcriptomics and plasma metabolomics-to characterize residual signatures on the 7th day after a single 6-h phase advance in male mice. Our data revealed significant alterations, particularly in the core clock genes Bmal1 and Cry1, and the metabolites l-arginine and SM(d18:1/18:1(11Z)), with notable differences at Zeitgeber Time 0 (ZT0).

View Article and Find Full Text PDF