Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among the agonists against three peroxisome proliferator-activated receptor (PPAR) subtypes, those against PPARα (fibrates) and PPARγ (glitazones) are currently used to treat dyslipidemia and type 2 diabetes, respectively, whereas PPARδ agonists are expected to be the next-generation metabolic disease drug. In addition, some dual/pan PPAR agonists are currently being investigated via clinical trials as one of the first curative drugs against nonalcoholic fatty liver disease (NAFLD). Because PPARα/δ/γ share considerable amino acid identity and three-dimensional structures, especially in ligand-binding domains (LBDs), clinically approved fibrates, such as bezafibrate, fenofibric acid, and pemafibrate, could also act on PPARδ/γ when used as anti-NAFLD drugs. Therefore, this study examined their PPARα/δ/γ selectivity using three independent assays-a dual luciferase-based GAL4 transactivation assay for COS-7 cells, time-resolved fluorescence resonance energy transfer-based coactivator recruitment assay, and circular dichroism spectroscopy-based thermostability assay. Although the efficacy and efficiency highly varied between agonists, assay types, and PPAR subtypes, the three fibrates, except fenofibric acid that did not affect PPARδ-mediated transactivation and coactivator recruitment, activated all PPAR subtypes in those assays. Furthermore, we aimed to obtain cocrystal structures of PPARδ/γ-LBD and the three fibrates via X-ray diffraction and versatile crystallization methods, which we recently used to obtain 34 structures of PPARα-LBD cocrystallized with 17 ligands, including the fibrates. We herein reveal five novel high-resolution structures of PPARδ/γ-bezafibrate, PPARγ-fenofibric acid, and PPARδ/γ-pemafibrate, thereby providing the molecular basis for their application beyond dyslipidemia treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9102038PMC
http://dx.doi.org/10.3390/ijms23094726DOI Listing

Publication Analysis

Top Keywords

fenofibric acid
12
ppar subtypes
12
bezafibrate fenofibric
8
acid pemafibrate
8
coactivator recruitment
8
three fibrates
8
acid
5
fibrates
5
functional structural
4
structural insights
4

Similar Publications

Antiepileptic drugs and lipid-lowering agents in surface water in Colombia: occurrence, ecological threat, and removal strategies.

Environ Sci Pollut Res Int

September 2025

Grupo de Saneamiento Ambiental, Facultad de Ingeniería, Escuela de Ingeniería de Recursos Naturales y del Ambiente, Universidad del Valle, Calle13 #100-00, 76001, Santiago de Cali, Colombia.

The presence of pharmaceuticals in water poses emerging environmental risks to aquatic ecosystems and potentially human health. This study investigates the occurrence and ecological threat of antiepileptic drugs and lipid-lowering agents in surface water, specifically in the Cauca River, one of the most important rivers in Colombia. Quantification was conducted using liquid chromatography coupled with mass spectrometry.

View Article and Find Full Text PDF

Background And Aim: Lipid accumulation in hepatocytes is reduced by the activation of the peroxisome proliferator-activated receptor (PPAR) α, which is associated with increased lysosomal acid lipase (LAL) activity, transcription factor EB (TFEB) expression, and mitochondrial β-oxidation.Aim of the study was to assess whether the three isoforms of PPAR, i.e.

View Article and Find Full Text PDF

Fenofibrate is contraindicated in patients with advanced hepatic fibrosis due to limited clinical data. We evaluated the pharmacokinetics and safety of fenofibrate in participants with mild hepatic impairment (phase 1 study) or advanced fibrosis due to metabolic-associated fatty liver disease (MAFLD; phase 2a study). In the phase 1 study, participants with mild hepatic impairment and healthy matched controls (each n = 10) received a single, oral dose of fenofibrate 48 mg.

View Article and Find Full Text PDF

Platinum-based anticancer drugs exert their effects by forming adducts within nuclear DNA (nDNA), inhibiting transcription and inducing apoptosis in cancer cells. However, tumor cells have evolved mechanisms to resist these drugs. Given mitochondria's role in cancer and their lack of nucleotide excision repair (NER), targeting mitochondrial DNA (mtDNA) offers a strategy.

View Article and Find Full Text PDF

The solubility of commonly used anti-inflammatory drugs has become a significant concern in contemporary medicine. Furthermore, inflammatory arthritis stands out as the most prevalent chronic inflammatory disease globally. The disease's pathology is characterized by heightened inflammation and oxidative stress, culminating in chronic pain and the loss of joint functionality.

View Article and Find Full Text PDF