98%
921
2 minutes
20
Background respiratory infections are transmitted by aerosol and droplets in close contact.AimWe investigated global incidence after implementation of non-pharmaceutical interventions (NPIs) against COVID-19 in March 2020.MethodsWe surveyed detections from laboratories and surveillance systems (national or regional) across the world from 1 April 2020 to 31 March 2021 and compared them with cases from corresponding months between 2017 and 2020. Macrolide-resistant (MRMp) data were collected from 1 April 2017 to 31 March 2021.ResultsThirty-seven sites from 21 countries in Europe, Asia, America and Oceania submitted valid datasets (631,104 tests). Among the 30,617 detections, 62.39% were based on direct test methods (predominantly PCR), 34.24% on a combination of PCR and serology (no distinction between methods) and 3.37% on serology alone (only IgM considered). In all countries, incidence by direct test methods declined significantly after implementation of NPIs with a mean of 1.69% (SD ± 3.30) compared with 8.61% (SD ± 10.62) in previous years (p < 0.01). Detection rates decreased with direct but not with indirect test methods (serology) (-93.51% vs + 18.08%; p < 0.01). Direct detections remained low worldwide throughout April 2020 to March 2021 despite widely differing lockdown or school closure periods. Seven sites (Europe, Asia and America) reported MRMp detections in one of 22 investigated cases in April 2020 to March 2021 and 176 of 762 (23.10%) in previous years (p = 0.04).ConclusionsThis comprehensive collection of detections worldwide shows correlation between COVID-19 NPIs and significantly reduced detection numbers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9101966 | PMC |
http://dx.doi.org/10.2807/1560-7917.ES.2022.27.19.2100746 | DOI Listing |
JMIR Hum Factors
September 2025
Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.
Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.
Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.
JAMA Netw Open
September 2025
Harvard Medical School, Boston, Massachusetts.
Importance: Research in behavioral economics has demonstrated that people have irrational biases, which make them susceptible to decisional shortcuts, or heuristics. The extent to which physicians consciously might use nudges to exploit these heuristics and thereby influence their patients' decision-making is unclear. In addition, ethical questions about the conscious use of nudges in medicine persist, yet little is known about how physicians experience and perceive their use.
View Article and Find Full Text PDFCerebellum
September 2025
Neuropsychology and Applied Cognitive Neuroscience Laboratory, State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
Reward processing involves several components, including reward anticipation, cost-effort computation, reward consumption, reward sensitivity, and reward learning. Recent research has highlighted the cerebellum's role in reward processing. This study aimed to investigate the effects of cerebellar stimulation on reward processing using high-definition transcranial direct current stimulation (HD-tDCS).
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDFA compact low-level RF (LLRF) control system based on RF system-on-chip (RFSoC) technology has been designed for the Advanced Concept Compact Electron Linear-accelerator (ACCEL) program, which has challenging requirements in both RF performance and size, weight, and power consumption (SWaP). The compact LLRF solution employs the direct RF sampling technique of RFSoC, which samples the RF signals directly without any analog upconversion and downconversion. Compared with the conventional heterodyne based architecture used for the LLRF system of a linear accelerator (LINAC), the elimination of analog mixers can significantly reduce the size and weight of the system, especially with LINAC requiring a larger number of RF channels.
View Article and Find Full Text PDF