Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metabolic resistance to pyrethroids is a menace to the continued effectiveness of malaria vector controls. Its molecular basis is complex and varies geographically across Africa. Here, we used a multi-omics approach, followed-up with functional validation to show that a directionally selected haplotype of a cytochrome P450, CYP9K1 is a major driver of resistance in Anopheles funestus. A PoolSeq GWAS using mosquitoes alive and dead after permethrin exposure, from Malawi and Cameroon, detected candidate genomic regions, but lacked consistency across replicates. Targeted sequencing of candidate resistance genes detected several SNPs associated with known pyrethroid resistance QTLs. The most significant SNPs were in the cytochrome P450 CYP304B1 (Cameroon), CYP315A1 (Uganda) and the ABC transporter gene ABCG4 (Malawi). However, when comparing field resistant mosquitoes to laboratory susceptible, the pyrethroid resistance locus rp1 and SNPs around the ABC transporter ABCG4 were consistently significant, except for Uganda where SNPs in the P450 CYP9K1 was markedly significant. In vitro heterologous metabolism assays with recombinant CYP9K1 revealed that it metabolises type II pyrethroid (deltamethrin; 64% depletion) but not type I (permethrin; 0%), while moderately metabolising DDT (17%). CYP9K1 exhibited reduced genetic diversity in Uganda underlying an extensive selective sweep. Furthermore, a glycine to alanine (G454A) amino acid change in CYP9K1 was fixed in Ugandan mosquitoes but not in other An. funestus populations. This study sheds further light on the evolution of metabolic resistance in a major malaria vector by implicating more genes and variants that can be used to design field-applicable markers to better track resistance Africa-wide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9321817PMC
http://dx.doi.org/10.1111/mec.16497DOI Listing

Publication Analysis

Top Keywords

pyrethroid resistance
12
malaria vector
12
resistance
8
anopheles funestus
8
metabolic resistance
8
cytochrome p450
8
p450 cyp9k1
8
abc transporter
8
cyp9k1
6
multi-omics analysis
4

Similar Publications

Background: Long-lasting insecticidal nets (LLINs) are the main vector control tools and remain protective against malaria, even in the presence of high pyrethroid resistance. However, in sub-Saharan Africa, the estimated percentage of the population sleeping under LLINs is low. Hence, this qualitative study was conducted to explore perceptions about LLINs and the reasons for low LLIN use in southern Ethiopia.

View Article and Find Full Text PDF

The pleiotropic odorant binding protein CaspOBP12 involved in perception of Ceutorhynchus asper for plant volatiles and pesticides.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural

The olfactory system of insects plays a vital role in their survival by enabling them to detect chemical cues and adapt to changing environments. The rape stem weevil, Ceutorhynchus asper, is a significant pest posing a challenge for rapeseed production due to its destructive feeding habit and increasing resistance to insecticides. So far, there's still limited knowledge about structure and function of odorant binding proteins (OBPs) in beetles like C.

View Article and Find Full Text PDF

Overexpression of G protein-coupled receptors (GPCRs) contributing to lambda-cyhalothrin resistance in Cydia pomonella.

Pestic Biochem Physiol

November 2025

College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China; Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, 11

G protein-coupled receptors (GPCRs) constitute a diverse and crucial family of membrane receptors, regulating a wide array of physiological processes. Although the involvement of GPCR signaling pathways in modulating key genes associated with insecticide resistance has been documented in various insect species, the molecular mechanisms underlying GPCR-mediated resistance in Cydia pomonella remain largely unknown. To elucidate the molecular basis of lambda-cyhalothrin (LCT) resistance in C.

View Article and Find Full Text PDF

Spodoptera frugiperda is a major crop pest that invaded Thailand in 2018 which cause significant damage, particularly to maize. In recent years, a loss of efficacy of certain insecticides has been observed, suggesting the emergence of resistance. The aim of our study was to investigate the molecular mechanisms of resistance in S.

View Article and Find Full Text PDF

Dry silica dust-based products for management of ixodids.

Vet Parasitol

August 2025

USDA-ARS, Knipling-Bushland U S. Livestock Insects Research Laboratory, Kerrville, TX 78028, United States. Electronic address:

Ixodids transmit a variety of disease-causing agents that afflict humans, livestock, companion animals, and wildlife, as well as reducing meat and milk yields, reproduction, hide quality, and occasionally inducing death from exsanguination. While the primary control tactic has been application of conventional synthetic acaricides, resistance to many of those products has occurred among various ixodid species. This development has instigated searches for alternative control tactics, such as growth regulators, bioactive animal and botanical substances, vaccines, biological control, and silica-based dusts.

View Article and Find Full Text PDF