Common miRNAs, candidate genes and their interaction network across four subtypes of epithelial ovarian cancer.

Bioinformation

Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India.

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Epithelial ovarian cancer (EOC) is categorized into four major histological subtypes such as clear cell carcinoma (CCC), endometrioid carcinoma (EC), mucinous carcinoma (MC), and serous carcinoma (SC). Heterogeneity of the EOC leads to different clinical outcomes of the disease, although all the subtypes are originated from the same layer of tissue. Therefore, it is of interest to identify the common candidate genes, miRNA and their interaction network in four the subtypes of EOC. A comparative gene expression analysis identified 248 common differentially expressed genes (DEGs) in the four subtypes of EOC. Identified common DEGs were found to be enriched in cancer specific pathways. A protein-protein interaction (PPI) network of the common DEGs were constructed, and subsequent module and survival analyses identified seven key candidate genes (CCNB1, CENPM, CEP55, RACGAP1, TPX2, UBE2C, and ZWINT). We also documented 10 key candidate miRNAs (hsa-mir-16-5p, hsa-mir-23b-3p, hsa-mir-34a-5p, hsa-mir-103a-3p, hsa-mir-107, hsa-mir-124-3p, hsa-mir-129-2-3p, hsa-mir-147a, hsa-mir-205-5p, and hsa-mir-195-5p) linked to the candidate genes. These derived data find application in the understanding of EOC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9049094PMC
http://dx.doi.org/10.6026/97320630017748DOI Listing

Publication Analysis

Top Keywords

candidate genes
16
interaction network
8
network subtypes
8
epithelial ovarian
8
ovarian cancer
8
subtypes eoc
8
common degs
8
key candidate
8
common
5
candidate
5

Similar Publications

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

modulates presynaptic Ca1.3 Ca channel function in inner hair cells (IHCs) and is required for indefatigable synaptic sound encoding. Biallelic variants in are associated with non-syndromic hearing loss (DFNB93).

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease. However, the biological role of mitochondrial metabolism (MM) in COPD remains poorly understood. This study aimed to explore the underlying mechanisms of MM in COPD using bioinformatics methods.

View Article and Find Full Text PDF

Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.

View Article and Find Full Text PDF

Background: Differentially expressed genes (DEGs) have been known to provide important information on disease mechanisms and potential therapeutic targets. The traditional Chinese medicine (TCM) offers a large reservoir of bioactive compounds that could modulate at these targets. This study is an attempt to investigate the biomarkers in Sepsis and COVID-19 using gene expression analysis and molecular modeling validation of TCM-derived candidate compounds targeting key DEGs associated with sepsis.

View Article and Find Full Text PDF