Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A common method to study protein complexes is immunoprecipitation (IP), followed by mass spectrometry (thus labeled: IP-MS). IP-MS has been shown to be a powerful tool to identify protein-protein interactions. It is, however, often challenging to discriminate true protein interactors from contaminating ones. Here, we describe the preparation of antifouling azide-functionalized polymer-coated beads that can be equipped with an antibody of choice via click chemistry. We show the preparation of generic immunoprecipitation beads that target the green fluorescent protein (GFP) and show how they can be used in IP-MS experiments targeting two different GFP-fusion proteins. Our antifouling beads were able to efficiently identify relevant protein-protein interactions but with a strong reduction in unwanted nonspecific protein binding compared to commercial anti-GFP beads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9136845PMC
http://dx.doi.org/10.1021/acsami.1c22734DOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
8
protein
5
highly specific
4
specific protein
4
protein identification
4
identification immunoprecipitation-mass
4
immunoprecipitation-mass spectrometry
4
spectrometry antifouling
4
antifouling microbeads
4
microbeads common
4

Similar Publications

Accurately identifying associations between human genes (proteins) and clinical phenotypes is critical for advancing drug development and precision medicine. While the human phenotype ontology (HPO) standardizes clinical phenotypes, current computational approaches for predicting human protein-phenotype associations suffer from two limitations: (1) underutilization of multimodal protein-related information and (2) lack of state-of-the-art deep learning representations tailored to diverse data modalities, such as text and sequence. To overcome these limitations, we introduce MultiFusion2HPO, a novel multimodal model that integrates diverse features and advanced learning methods from multiple data sources to enhance the prediction of human protein-HPO associations.

View Article and Find Full Text PDF

Chromosome 8 Open Reading Frame 76 (C8orf76) Co-Expressed with Cyclin-Dependent Kinase 4 (CDK4) as a Prognostic Indicator of Colorectal Cancer.

Biomed Environ Sci

August 2025

Gastrointestinal Disease Centre, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang 050031, Hebei, China.

Objective: To explore the correlation between chromosome 8 open reading frame 76 (C8orf76) and cyclin-dependent kinase 4 (CDK4) and the potential predictive effect of C8orf76 and CDK4 on the prognosis of colorectal cancer (CRC).

Methods: We constructed a protein-protein interaction network of C8orf76-related genes and analyzed the prognostic signatures of C8orf76 and CDK4. Clinicopathological features of C8orf76 and CDK4 were visualized using a nomogram.

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Purpose: This study aimed to conduct functional proteomics across breast cancer subtypes with bioinformatics analyses.

Methods: Candidate proteins were identified using nanoscale liquid chromatography with tandem mass spectrometry (NanoLC-MS/MS) from core needle biopsy samples of early stage (0-III) breast cancers, followed by external validation with public domain gene-expression datasets (TCGA TARGET GTEx and TCGA BRCA).

Results: Seventeen proteins demonstrated significantly differential expression and protein-protein interaction (PPI) found the strong networks including COL2A1, COL11A1, COL6A1, COL6A2, THBS1 and LUM.

View Article and Find Full Text PDF

Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.

Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.

View Article and Find Full Text PDF