Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To optimize the design, develop and test a prototype ionization chamber for accurate daily output constancy measurements in solid phantoms in clinical magnetic resonance-guided radiation therapy (MRgRT) radiotherapy beams. Up to 4% variations in response using commercial ionization chambers have been previously reported; the prototype ionization chamber developed here aims to minimize these variations.

Methods: Monte Carlo simulations with the EGSnrc code system are used to optimize an ionization chamber design by increasing the thickness of a brass (high-density, nonferromagnetic, easy-to-machine) wall until results consistent with no air gap are produced for simulations with a 1.5 T and 0.35 T magnetic field, with a 0.2 mm air gap and varying the placement of the chamber model within the air gap. Based on the results of these simulations, prototype ionization chambers are manufactured and tested in conventional linac beams and in a 7 MV Elekta Unity MR-linac. The chambers are rotated about their axes, both parallel and perpendicular to the 1.5 T magnetic field, through 360º in a plastic phantom with measurements made at each cardinal angle. This reveals any variation in chamber response by varying the thickness of the air gap between the chamber and the phantom.

Results: Monte Carlo simulations demonstrate that the optimal thickness of the chamber wall to mitigate the effect of an asymmetric air gap between the chamber and the plastic phantom is 1.1 mm of brass. With this thickness, the differences between simulations with and without an air gap and with asymmetric placement of the chamber within the air gap are less than 0.2%. A prototype chamber constructed with a 1.1 mm brass wall thickness exhibits less than 0.3% variation in response when rotated about its axis in the plastic phantom in a beam from an MR-linac, independent of whether its axis is parallel or perpendicular to the magnetic field.

Conclusion: The optimized ionization chamber design and validated prototype for accurate MR-linac daily output constancy measurements allows utilization of conventional phantoms and procedures in MRgRT systems. This can minimize disruption to clinical workflow for MR-linac quality assurance measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.15695DOI Listing

Publication Analysis

Top Keywords

air gap
28
ionization chamber
20
prototype ionization
16
monte carlo
12
chamber
12
daily output
12
output constancy
12
constancy measurements
12
plastic phantom
12
chamber accurate
8

Similar Publications

Limited research has examined the relationships of co-exposure to air pollutants, temperature, and road traffic noise with chronic kidney disease (CKD) incidence and the interaction between PM and temperature. To address this gap, the present study explored these associations and interactions in Taiwan. A cohort of 3,041 older individuals (aged ≥55 years) was recruited in 2009 and followed until 2019.

View Article and Find Full Text PDF

Removal and inactivation of human coronavirus surrogates from hard and soft surfaces using disinfectant wipes.

Appl Environ Microbiol

September 2025

Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA.

Disinfectant wipes are widely used to reduce microbial contamination on surfaces, yet there is limited information on how viruses are physically removed or chemically inactivated during wiping. This study aimed to address this gap by comparing the contributions of physical removal and chemical inactivation to overall disinfection efficacy. Glass and vinyl coupons were contaminated with SARS-CoV-2 surrogates, bovine coronavirus (BCoV), or human coronavirus OC43, at an initial titer of 5-6 log TCID/surface with 5% soil load.

View Article and Find Full Text PDF

Due to its sizable direct bandgap and strong light-matter interactions, the preparation of monolayer MoS has attracted significant attention and intensive research efforts. However, multilayer MoS is largely overlooked because of its optically inactive indirect bandgap caused by interlayer coupling. It is highly desirable to modulate and decrease the interlayer coupling so that each layer in multilayer MoS can exhibit a monolayer-like direct-gap behavior.

View Article and Find Full Text PDF

Vitamin D is critically important for sustainable human health, and the rising prevalence of deficiency-related diseases has increased interest in natural sources. This study explores the potential of epiphytic lichen-forming fungi, known for their unique metabolites, as a novel biosource of vitamin D for pharmaceutical and nutraceutical applications. Fourteen epiphytic lichen species were collected using a stratified sampling method from four mountainous forests in the Marmara Region of Türkiye.

View Article and Find Full Text PDF

Climate change has heightened awareness of the health impacts of non-optimal temperatures (cold and heat), including the effect of gestational exposure and birth outcomes. However, temperature exposure assessment remains methodologically challenging due to unaccounted individual spatiotemporal mobility and adaptive behaviors, a gap that has not been adequately addressed in published studies. Using data from a prospective birth cohort in Guangzhou, China, conducted from 2017 to 2020, we assessed and compared three different exposure measures: home-based exposure, derived solely from ambient temperature data at residential locations; mobility-based exposure, incorporating individuals' spatiotemporal activities to capture dynamic environmental conditions; and AC & mobility-based exposure, an extension of the mobility-based approach that further integrates data on air-conditioning usage.

View Article and Find Full Text PDF