Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As the power conversion efficiency (PCE) of organic photovoltaics (OPVs) approaches 19%, increasing research attention is being paid to enhancing the device's long-term stability. In this study, a robust interface engineering of graphene oxide nanosheets (GNS) is expounded on improving the thermal and photostability of non-fullerene bulk-heterojunction (NFA BHJ) OPVs to a practical level. Three distinct GNSs (GNS, N-doped GNS (N-GNS), and N,S-doped GNS (NS-GNS)) synthesized through a pyrolysis method are applied as the ZnO modifier in inverted OPVs. The results reveal that the GNS modification introduces passivation and dipole effects to enable better energy-level alignment and to facilitate charge transfer across the ZnO/BHJ interface. Besides, it optimizes the BHJ morphology of the photoactive layer, and the N,S doping of GNS further enhances the interaction with the photoactive components to enable a more idea BHJ morphology. Consequently, the NS-GNS device delivers enhanced performance from 14.5% (control device) to 16.5%. Moreover, the thermally/chemically stable GNS is shown to stabilize the morphology of the ZnO electron transport layer (ETL) and to endow the BHJ morphology of the photoactive layer grown atop with a more stable thermodynamic property. This largely reduces the microstructure changes and the associated charge recombination in the BHJ layer under constant thermal/light stresses. Finally, the NS-GNS device is demonstrated to exhibit an impressive T lifetime (time at which PCE of the device decays to 80% of the initial PCE) of 2712 h under a constant thermal condition at 65 °C in a glovebox and an outstanding photostability with a T lifetime of 2000 h under constant AM1.5G 1-sun illumination in an N -controlled environment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202107834DOI Listing

Publication Analysis

Top Keywords

bhj morphology
12
improving thermal
8
thermal photostability
8
robust interface
8
interface engineering
8
morphology photoactive
8
photoactive layer
8
ns-gns device
8
gns
7
bhj
5

Similar Publications

Over 19% Efficiency Polymer Solar Cells Enabled by Selectively Tuning Bulkheterojunction Morphology via a Dual-Heating Strategy.

Small Methods

September 2025

Key Laboratory of Advanced Materials Chemistry and Devices (AMCDLab) of the Department of Education of Inner Mongolia Autonomous Region, College of Chemistry and Environment Science, Inner Mongolia Normal University, Hohhot, 010022, China.

Photovoltaic performance of bulkheterojunction (BHJ)-based organic solar cells is critically governed by morphologies of donor:acceptor blends as light-harvesting layers. However, ideal morphological control remains challenging due to the systems' complexity. In this work, a sequential dual-heating (DH) strategy is presented to precisely tailor the BHJ morphology in a D18-Cl:Y6 system, achieving a remarkable 19.

View Article and Find Full Text PDF

The incorporation of thick active layers (>300 nm) is an essential requirement for wide-scale industrial production of organic solar cells (OSCs). However, it is still challenging to achieve efficient thick film devices, in particular for all-polymer OSCs, which are generally considered the most stable type of OSCs. In this study, a simple yet effective method is introduced by using a direct current (DC) field to manipulate the morphology of bulk heterojunction (BHJ) films within all-polymer OSCs during a blade coating process.

View Article and Find Full Text PDF

Deep learning models have achieved remarkable success in segmenting brain white matter lesions in multiple sclerosis (MS), becoming integral to both research and clinical workflows. While brain lesions have gained significant attention in MS research, the involvement of spinal cord lesions in MS is relatively understudied. This is largely owing to the variability in spinal cord magnetic resonance imaging (MRI) acquisition protocols, high individual anatomical differences, the complex morphology and size of spinal cord lesions, and lastly, the scarcity of labeled datasets required to develop robust segmentation tools.

View Article and Find Full Text PDF

The response surface methodology (RSM) based on a Box-Behnken (BB) design of experiment (DoE) approach was performed, with the central point repeated four times to enhance statistical reliability, to systematically investigate the influence of ultrasonic aerosol jet printing (uAJP) parameters such as speed, flow, and power, while depositing the donor material deposition, on the acceptor/donor ratio and power conversion efficiency (PCE). Efforts were made to tune the D:A ratio to approximately 1:1.2, a composition widely used for the PM6:Y12 active layer system.

View Article and Find Full Text PDF

In organic solar cells (OSCs), the molecular aggregation property of donor-acceptor bulk heterojunction (BHJ) architectures serves as a critical determinant in device performance. Nevertheless, the intrinsic steric constraints imposed by polymeric side chains frequently lead to metastable molecular packing configurations with diminished structural coherence. In this study, a morphological modulation strategy is proposed by adopting a 2D layered hydrotalcite (HDC) nanocrystal to regulate polymeric adsorption dynamics.

View Article and Find Full Text PDF