Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The methyl ester of 8-oxo-8-indeno[2',1':7,8]naphtho[1,2-]thiophene-2-carboxylic acid (1) and its corresponding PEGylated ester were synthesised and fully characterised. X-ray diffraction studies on (1) confirmed the helical structure of the receptor and that it is self-assembled into layers by π-π interactions. An in-depth study by DFT calculations and MS experiments (ESI-MS, MS/MS, IMRPD and ESI-IMS-MS) was carried out between (1) and the physiological cation K. The formation of supramolecular complexes between (1) and K with different stoichiometries was demonstrated and the cation K preferentially interacts with the oxygen atoms of the carbonyl bond of the ketone and ester groups and the sulphur atom of the heterocycle. The ability of the two synthesized aromatic architectures to transport ions across a model lipid membrane has been studied by electrophysiology experiments. The formation of pores was observed, even at nanomolar concentrations. Since the PEGylated molecule showed more regular pore definitions than the hydrophobic molecule, the introduction of a polar hydrophilic chain made it possible to control the orientation of the aromatic architectures within the membrane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056421PMC
http://dx.doi.org/10.1039/d0ra05519kDOI Listing

Publication Analysis

Top Keywords

aromatic architectures
8
helically shaped
4
shaped cation
4
cation receptor
4
receptor design
4
design synthesis
4
synthesis characterisation
4
characterisation application
4
application ion
4
ion transport
4

Similar Publications

This work introduces the novel anionic cluster BSiZn as the smallest molecular "compass", featuring a unique two-layered architecture with a planar pentacoordinate boron (ppB) center. The cluster comprises a quasi-planar BSi stator─a silicon-based analogue of borozene with σ/π double aromaticity (6π + 10σ delocalized electrons)─and a Zn rotor dimer. High-level calculations (CCSD(T)//PBE0-D3) reveal an ultralow rotational barrier of 0.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) significantly impact air quality as photochemical smog precursors and health hazards. Catalytic oxidation is a leading VOC abatement method but suffers from catalyst deactivation due to metal sintering and competitive adsorption in complex mixtures. Strong metal-support interactions (SMSIs) provide atomic level control of interfacial electronic and geometric structures.

View Article and Find Full Text PDF

Hexa--hexabenzocoronene (HBC) and its derivatives have emerged as prominent polycyclic aromatic hydrocarbons (PAHs) due to their unique structural, electronic, and photophysical properties. This review provides a comprehensive overview of the synthetic strategies employed for the construction of HBC frameworks, ranging from traditional methods to recent advances that offer improved efficiency, regioselectivity, and structural diversity. The molecular architecture of HBCs, characterized by extended π-conjugation and planarity, contributes significantly to their stability and distinctive physical properties, including high charge-carrier mobility and tunable optical absorption.

View Article and Find Full Text PDF

Fexinidazole, a drug active against trypanosomiasis and leishmaniasis, is a rare example of a nitroaromatic compound approved under the contemporary drug discovery framework. In an earlier study, we showed that the nitro group is absolutely required for antileishmanial activity. The current study employed X-ray crystallography to unveil the structural intricacies of fexinidazole and its principal metabolites, as well as electroanalytical analyses to characterize the reduction properties of the aromatic nitro group.

View Article and Find Full Text PDF

The application of chalcogen bonding catalysis has been largely confined to benchmark reactions due to the limited structural diversity and activating ability of the catalysts, especially those derived from tellurium. Herein, we present a group of rationally designed bis-telluronium catalysts and realize the first application of chalcogen bonding donor in catalyzing the [4 + 2] cycloaddition reaction between azetidines and non-activated alkenes or alkynes. This chemistry demonstrates excellent functional group tolerance and offers an efficient avenue to access the piperidine and tetrahydropyridine architectures in generally moderate-to-good efficiency.

View Article and Find Full Text PDF