98%
921
2 minutes
20
The methyl ester of 8-oxo-8-indeno[2',1':7,8]naphtho[1,2-]thiophene-2-carboxylic acid (1) and its corresponding PEGylated ester were synthesised and fully characterised. X-ray diffraction studies on (1) confirmed the helical structure of the receptor and that it is self-assembled into layers by π-π interactions. An in-depth study by DFT calculations and MS experiments (ESI-MS, MS/MS, IMRPD and ESI-IMS-MS) was carried out between (1) and the physiological cation K. The formation of supramolecular complexes between (1) and K with different stoichiometries was demonstrated and the cation K preferentially interacts with the oxygen atoms of the carbonyl bond of the ketone and ester groups and the sulphur atom of the heterocycle. The ability of the two synthesized aromatic architectures to transport ions across a model lipid membrane has been studied by electrophysiology experiments. The formation of pores was observed, even at nanomolar concentrations. Since the PEGylated molecule showed more regular pore definitions than the hydrophobic molecule, the introduction of a polar hydrophilic chain made it possible to control the orientation of the aromatic architectures within the membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9056421 | PMC |
http://dx.doi.org/10.1039/d0ra05519k | DOI Listing |
J Phys Chem A
September 2025
Department of Chemistry, Xinzhou Normal University, 1 East Dunqi Street, Xinzhou 034000, Shanxi, People's Republic of China.
This work introduces the novel anionic cluster BSiZn as the smallest molecular "compass", featuring a unique two-layered architecture with a planar pentacoordinate boron (ppB) center. The cluster comprises a quasi-planar BSi stator─a silicon-based analogue of borozene with σ/π double aromaticity (6π + 10σ delocalized electrons)─and a Zn rotor dimer. High-level calculations (CCSD(T)//PBE0-D3) reveal an ultralow rotational barrier of 0.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, P.R. China.
Volatile organic compounds (VOCs) significantly impact air quality as photochemical smog precursors and health hazards. Catalytic oxidation is a leading VOC abatement method but suffers from catalyst deactivation due to metal sintering and competitive adsorption in complex mixtures. Strong metal-support interactions (SMSIs) provide atomic level control of interfacial electronic and geometric structures.
View Article and Find Full Text PDFRSC Adv
August 2025
Chemistry Department, College of Science, King Khalid University Abha 61421 Saudi Arabia.
Hexa--hexabenzocoronene (HBC) and its derivatives have emerged as prominent polycyclic aromatic hydrocarbons (PAHs) due to their unique structural, electronic, and photophysical properties. This review provides a comprehensive overview of the synthetic strategies employed for the construction of HBC frameworks, ranging from traditional methods to recent advances that offer improved efficiency, regioselectivity, and structural diversity. The molecular architecture of HBCs, characterized by extended π-conjugation and planarity, contributes significantly to their stability and distinctive physical properties, including high charge-carrier mobility and tunable optical absorption.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Bioinorganic Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald 17489, Germany.
Fexinidazole, a drug active against trypanosomiasis and leishmaniasis, is a rare example of a nitroaromatic compound approved under the contemporary drug discovery framework. In an earlier study, we showed that the nitro group is absolutely required for antileishmanial activity. The current study employed X-ray crystallography to unveil the structural intricacies of fexinidazole and its principal metabolites, as well as electroanalytical analyses to characterize the reduction properties of the aromatic nitro group.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China.
The application of chalcogen bonding catalysis has been largely confined to benchmark reactions due to the limited structural diversity and activating ability of the catalysts, especially those derived from tellurium. Herein, we present a group of rationally designed bis-telluronium catalysts and realize the first application of chalcogen bonding donor in catalyzing the [4 + 2] cycloaddition reaction between azetidines and non-activated alkenes or alkynes. This chemistry demonstrates excellent functional group tolerance and offers an efficient avenue to access the piperidine and tetrahydropyridine architectures in generally moderate-to-good efficiency.
View Article and Find Full Text PDF