Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In recent years, double perovskites have attracted considerable attention as potential candidates for photovoltaic applications. However, most double perovskites are not suitable for single-junction solar cells due to their large band gaps (over 2.0 eV). In the present study, we have investigated the structural, mechanical, electronic and optical properties of the CsTe Ti I solid solutions using first-principles calculations based on density functional theory. These compounds exhibit good structural stability compared to CHNHPbI. The results suggest that CsTeI is an indirect band gap semiconductor, and it can become a direct band gap semiconductor with the value of 1.09 eV when the doping concentration of Ti is 0.50. Moreover, an ideal direct band gap of 1.31 eV is obtained for CsTeTiI. The calculated results indicate that all the structures are ductile materials except for CsTeTiI. Our results also show that these materials possess large absorption coefficients in the visible light region. Our work can provide a route to explore stable, environmentally friendly and high-efficiency light absorbers for use in optoelectronic applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9057016PMC
http://dx.doi.org/10.1039/d0ra07586hDOI Listing

Publication Analysis

Top Keywords

band gap
16
optical properties
8
double perovskites
8
gap semiconductor
8
direct band
8
indirect-to-direct band
4
gap
4
gap transition
4
transition optical
4
properties metal
4

Similar Publications

A potential replacement that alleviates the shortcomings of the dominant light absorber materials used in solar photovoltaics has been synthesized, and its microstructural, electronic structure, and optical properties have been investigated. KCuS crystals were synthesized by the carbonate method. Transmission electron microscopy (TEM) established [010] as the growth direction of the needle-like monoclinic crystals.

View Article and Find Full Text PDF

The incorporation of transitional elements into silicon or germanium-based semiconductor clusters not only notably improves their structural stability but also endows them with unprecedented multifunctionalities. In this work, the structural, vibrational, and electronic properties for copper-doped silicon and germanium cation clusters Cu (X = Si or Ge, = 6-16) are systematically investigated. The ground-state structures are identified using the PBE0 and mPW2PLYP method combined with a global search technique.

View Article and Find Full Text PDF

The present research reports the synthesis of poly-[ethylene oxide]-based composite films (500 μm) containing metal nanoparticles (NPs) [Ag ( ∼ 6 nm), Cu ( ∼ 25 nm), and Fe ( ∼ 35 nm)] as the mobile phase. The novelty of the study is in the corroboration of a plausible mechanism for the generation of metal NPs through green synthesis using herbal extracts of (Tea) and (Neem). Density functional theory (DFT) is used to optimize the phytoreductants present in both biosources, wherein the reducing and/or stabilizing functional entities are primarily hydroxyl groups (-OH).

View Article and Find Full Text PDF

Nanoscale materials are attracting a great deal of attention due to their exceptional properties, making them indispensable for many advanced applications. Among these materials, spinel ferrites stand out for their potential applications in electronic, optoelectronic, energy storage and other devices. This is why the development of a synthesis process combined with rigorous optimization of annealing conditions is provided to be an essential approach to control nanoparticle formation and fine-tuning their structural, morphological and functional characteristics.

View Article and Find Full Text PDF

Due to its sizable direct bandgap and strong light-matter interactions, the preparation of monolayer MoS has attracted significant attention and intensive research efforts. However, multilayer MoS is largely overlooked because of its optically inactive indirect bandgap caused by interlayer coupling. It is highly desirable to modulate and decrease the interlayer coupling so that each layer in multilayer MoS can exhibit a monolayer-like direct-gap behavior.

View Article and Find Full Text PDF