98%
921
2 minutes
20
CO electroreduction reaction offers an attractive approach to global carbon neutrality. Industrial CO electrolysis towards formate requires stepped-up current densities, which is limited by the difficulty of precisely reconciling the competing intermediates (COOH* and HCOO*). Herein, nano-crumples induced Sn-Bi bimetallic interface-rich materials are in situ designed by tailored electrodeposition under CO electrolysis conditions, significantly expediting formate production. Compared with Sn-Bi bulk alloy and pure Sn, this Sn-Bi interface pattern delivers optimum upshift of Sn p-band center, accordingly the moderate valence electron depletion, which leads to weakened Sn-C hybridization of competing COOH* and suitable Sn-O hybridization of HCOO*. Superior partial current density up to 140 mA/cm for formate is achieved. High Faradaic efficiency (>90%) is maintained at a wide potential window with a durability of 160 h. In this work, we elevate the interface design of highly active and stable materials for efficient CO electroreduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9072316 | PMC |
http://dx.doi.org/10.1038/s41467-022-29861-w | DOI Listing |
Nat Commun
May 2022
Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
CO electroreduction reaction offers an attractive approach to global carbon neutrality. Industrial CO electrolysis towards formate requires stepped-up current densities, which is limited by the difficulty of precisely reconciling the competing intermediates (COOH* and HCOO*). Herein, nano-crumples induced Sn-Bi bimetallic interface-rich materials are in situ designed by tailored electrodeposition under CO electrolysis conditions, significantly expediting formate production.
View Article and Find Full Text PDF