Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28-2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113601PMC
http://dx.doi.org/10.1371/journal.ppat.1010471DOI Listing

Publication Analysis

Top Keywords

viral infection
8
viral infections
8
virus-induced immunopathology
8
immunopathology
6
viral
6
type
4
type interferon
4
interferon regulates
4
regulates proteolysis
4
macrophages
4

Similar Publications

Since the first decentralized clinical trial (DCT) was conducted in 2011, there has been an increased usage of DCT due to its benefits of patient-centricity and generalizability of findings. This trend was further expedited by the global COVID-19 pandemic. We identified 23 case studies across various therapeutic areas and grouped them into different categories according to their purposes-by necessity, for operational benefits, to address unique research questions, to validate innovative digital endpoints, or to validate decentralization as a clinical research platform.

View Article and Find Full Text PDF

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

In this paper, we propose a general latent HIV infection model with general incidence and three distributed delays. We start with the analysis of the proposed model by establishing the positivity and boundedness of solutions and calculating basic reproduction number R0. Then, we show that the infection-free equilibrium is globally asymptotically stable when R0<1 (is globally attractive when R0=1), while the disease is uniformly persistent when R0>1.

View Article and Find Full Text PDF

Rift Valley fever virus (RVFV) causes mild to severe disease in livestock and humans. It was first identified in 1931 during an epizootic in Kenya and has spread across Africa and into the Middle East. Hematopoietic cells are one of the major targets of RVFV ; however, their contribution to RVFV pathogenesis remains poorly understood.

View Article and Find Full Text PDF

The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).

View Article and Find Full Text PDF