98%
921
2 minutes
20
There is a growing awareness that the large number of environmental pollutants we are exposed to on a daily basis are causing major health problems. Compared to traditional studies that focus on individual pollutants, there are relatively few studies on how pollutants mixtures interact. Several studies have reported a relationship between environmental pollutants and the development of cancer, even when pollutant levels are below toxicity reference values. The possibility of synergistic interactions between different pollutants could explain how even low concentrations can cause major health problems. These intricate that molecular interactions can occur through a wide variety of mechanisms, and our understanding of the physiological effects of mixtures is still limited. The purpose of this paper is to discuss recent reports that address possible synergistic interactions between different types of environmental pollutants that could promote cancer development. Our literature studies suggest that key biological pathways are frequently implicated in such processes. These include increased production of reactive oxygen species, activation by cytochrome P450, and aryl hydrocarbon receptor signaling, among others. We discuss the need to understand individual pathological vulnerability not only in relation to basic genetics and gene expression, but also in terms of measurable exposure to contaminants. We also mention the need for significant improvements in future studies using a multitude of disciplines, such as the development of high-throughput study models, better tools for quantifying pollutants in cancer patients, innovative pharmacological and toxicological studies, and high-efficiency computer analysis, which allow us to analyze the molecular mechanisms of mixtures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036628 | PMC |
http://dx.doi.org/10.1029/2021GH000552 | DOI Listing |
ACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFEnviron Epidemiol
October 2025
Department of Psychiatry and Behavioral Health, The Ohio State University, Ohio.
Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.
View Article and Find Full Text PDFGlob Health Action
December 2025
Department of Otolaryngology, Head & Neck Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China.
Background: Allergic rhinitis (AR) is an increasingly prominent global public health issue, where air pollution significantly contributes to its rising incidence. Although numerous studies have explored the link between air pollution and AR pathogenesis, comprehensive summaries are still limited.
Objective: This study performs a bibliometric analysis to identify research hotspots and emerging trends, offering insights into AR prevention and management.
Environ Geochem Health
September 2025
Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.
View Article and Find Full Text PDF