Human Protein-l-isoaspartate -Methyltransferase Domain-Containing Protein 1 (PCMTD1) Associates with Cullin-RING Ligase Proteins.

Biochemistry

Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States.

Published: May 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The spontaneous l-isoaspartate protein modification has been observed to negatively affect protein function. However, this modification can be reversed in many proteins in reactions initiated by the protein-l-isoaspartyl (d-aspartyl) -methyltransferase (PCMT1). It has been hypothesized that an additional mechanism exists in which l-isoaspartate-damaged proteins are recognized and proteolytically degraded. Herein, we describe the protein-l-isoaspartate -methyltransferase domain-containing protein 1 (PCMTD1) as a putative E3 ubiquitin ligase substrate adaptor protein. The N-terminal domain of PCMTD1 contains l-isoaspartate and -adenosylmethionine (AdoMet) binding motifs similar to those in PCMT1. This protein also has a C-terminal domain containing suppressor of cytokine signaling (SOCS) box ubiquitin ligase recruitment motifs found in substrate receptor proteins of the Cullin-RING E3 ubiquitin ligases. We demonstrate specific PCMTD1 binding to the canonical methyltransferase cofactor -adenosylmethionine (AdoMet). Strikingly, while PCMTD1 is able to bind AdoMet, it does not demonstrate any l-isoaspartyl methyltransferase activity under the conditions tested here. However, this protein is able to associate with the Cullin-RING proteins Elongins B and C and Cul5 and in human cells. The previously uncharacterized PCMTD1 protein may therefore provide an alternate maintenance pathway for modified proteins in mammalian cells by acting as an E3 ubiquitin ligase adaptor protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875861PMC
http://dx.doi.org/10.1021/acs.biochem.2c00130DOI Listing

Publication Analysis

Top Keywords

ubiquitin ligase
12
protein
9
protein-l-isoaspartate -methyltransferase
8
-methyltransferase domain-containing
8
domain-containing protein
8
protein pcmtd1
8
adaptor protein
8
-adenosylmethionine adomet
8
pcmtd1
6
proteins
6

Similar Publications

A rapid imaging-based screen for induced-proximity degraders identifies a potent degrader of oncoprotein SKP2.

Nat Biotechnol

September 2025

Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.

Targeted protein degraders hold potential as therapeutic agents to target conventionally 'undruggable' proteins. Here, we develop a high-throughput screen, DEath FUSion Escaper (DEFUSE), to identify small-molecule protein degraders. By conjugating the protein of interest to a fast-acting triggerable death protein, this approach translates target protein degradation into a cell survival phenotype to illustrate the presence of degraders.

View Article and Find Full Text PDF

Targeting the IRS1 macromolecular signaling node by Trienomycin a triggers cytoprotective autophagy in pancreatic adenocarcinoma.

Int J Biol Macromol

September 2025

Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Xianyang, China. Electronic address:

Pancreatic adenocarcinoma (PAAD) lacks effective therapies due to complex macromolecular signaling networks. Here, we identified the natural compound Trienomycin A (TA) as a potent binder and degrader of the key signaling adaptor protein Insulin Receptor Substrate 1 (IRS1), disrupting its macromolecular assembly in insulin-like growth pathways. Through integrated biochemical, cellular, and in vivo analyses, we demonstrated that TA directly bound the phosphotyrosine-binding (PTB) domain of IRS1, inducing proteasomal degradation of this critical macromolecular hub mediated by the E3 ubiquitin ligase FBXW8.

View Article and Find Full Text PDF

Valproic acid-based self-assembling nanoparticle prodrugs prevent skeletal muscle loss in cancer cachexia.

Colloids Surf B Biointerfaces

September 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Center for Applied Nanomedicine, National Cheng Kung University, No.1, University Road, East District, Tainan 701, Taiwan. Electronic address: y-nagasaki

Cancer cachexia is a multifactorial syndrome characterized by persistent skeletal muscle loss, affecting 80 % of patients with advanced cancer and accounting for 20 % of cancer-related deaths. Despite its prevalence, effective treatment options remain limited due to the side effects and poor pharmacokinetic (PK) profiles of existing therapeutics, including valproic acid (VPA). To overcome these limitations, we developed self-assembling VPA-based nanoparticle prodrugs (abbreviated as Nano), consisting of amphiphilic block copolymers, in which VPA is covalently conjugated via ester linkages.

View Article and Find Full Text PDF

Dynamic regulation of the oxidative stress response by the E3 ligase TRIP12.

Cell Rep

September 2025

Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berk

Centered on the transcription factor NRF2 and its E3 ligase CUL3, the oxidative stress response protects cells from damage by reactive oxygen species (ROS). Increasing ROS inhibits CUL3 to stabilize NRF2 and elicit antioxidant gene expression, while cells recovering from stress rapidly turn over NRF2 again to prevent reductive stress and oxeiptosis-dependent death. How cells reinitiate NRF2 degradation after ROS have been cleared remains poorly understood.

View Article and Find Full Text PDF

Parkin is a mitochondria-associated E3 ubiquitin (Ub) ligase that mediates mitophagy and organelle quality control. More recently, Parkin has been implicated in stimulating antitumor immunity and reprogramming the tumor immune microenvironment. Here, we showed that Parkin ubiquitinates the alarmin molecule, high mobility group box-1 (HMGB1) on Lys146 (K146) using predominantly K48 linkages.

View Article and Find Full Text PDF