98%
921
2 minutes
20
The quantification and localization of elastic strains and defects in crystals are necessary to control and predict the functioning of materials. The X-ray imaging of strains has made very impressive progress in recent years. On the one hand, progress in optical elements for focusing X-rays now makes it possible to carry out X-ray diffraction mapping with a resolution in the 50-100 nm range, while lensless imaging techniques reach a typical resolution of 5-10 nm. This continuous evolution is also a consequence of the development of new two-dimensional detectors with hybrid pixels whose dynamics, reading speed and low noise level have revolutionized measurement strategies. In addition, a new accelerator ring concept (HMBA network: hybrid multi-bend achromat lattice) is allowing a very significant increase (a factor of 100) in the brilliance and coherent flux of synchrotron radiation facilities, thanks to the reduction in the horizontal size of the source. This review is intended as a progress report in a rapidly evolving field. The next ten years should allow the emergence of three-dimensional imaging methods of strains that are fast enough to follow, , the evolution of a material under stress or during a transition. Handling massive amounts of data will not be the least of the challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9024510 | PMC |
http://dx.doi.org/10.3390/nano12081363 | DOI Listing |
Dalton Trans
September 2025
Department of Chemistry, IIT Kharagpur, Kharagpur, 721302, India.
The solid-solution alloys of Mn-Zn-Ga and Mn-Zn-Sn have been synthesized by a high-temperature method and structurally characterized by X-ray diffraction studies. The substitutional solid-solution alloys that crystallize in the chiral space group 432 or 432 adopt the A13-type structure (β-Mn). Similar to β-Mn, the 20 atoms in the cubic unit cell are distributed over 8 and 12 Wyckoff positions.
View Article and Find Full Text PDFChemistry
September 2025
Department of Chemistry, Birla Institute of Technology and Science-Pilani, K K Birla Goa Campus, Zuarinagar, Goa, 403726, India.
This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.
View Article and Find Full Text PDFInt J Cosmet Sci
September 2025
Department of Pharmaceutics and Medicines, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Objective: The objective of this work is to investigate different sunscreens and Viscogel group organoclays for the preparation of new intercalated sunscreens to improve the effectiveness and safety in photoprotection using new approach methodology (NAMs).
Methods: For this study, we examined Diethylamino hydroxybenzoyl hexyl benzoate (DHHB), octyl methoxycinnamate (OMC), Bemotrizinol (BEMT) and Viscogel S4®, S7®, and B8® using a set of Saccharomyces cerevisiae mutant strains that are sensitive to UVA, UVB and Solar Simulated Light (SSL) to evaluate their photoprotective and mutagenic potential. Additionally, we developed delaminated nanocomposites by chemical intercalation reactions followed by ultrasonic treatment to enhance clay exfoliation.
Environ Sci Pollut Res Int
September 2025
Department of Chemistry Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran.
This study introduces a back filter installed at the end of the exhaust pipe of city buses. The impact of the metal type used in its construction on the absorption of suspended particles and the reduction of sulfides in diesel engine exhaust gases is investigated. The back filter is constructed from three metals: copper, zinc, and nickel.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Department of Chemistry, Government Arts College(A), Salem, Tamil Nadu, 636007, India.
A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.
View Article and Find Full Text PDF