98%
921
2 minutes
20
Leaves of Mediterranean evergreen tree species experience a reduction in net CO2 assimilation (AN) and mesophyll conductance to CO2 (gm) during aging and senescence, which would be influenced by changes in leaf anatomical traits at cell level. Anatomical modifications can be accompanied by the dismantling of photosynthetic apparatus associated to leaf senescence, manifested through changes at the biochemical level (i.e., lower nitrogen investment in photosynthetic machinery). However, the role of changes in leaf anatomy at cell level and nitrogen content in gm and AN decline experienced by old non-senescent leaves of evergreen trees with long leaf lifespan is far from being elucidated. We evaluated age-dependent changes in morphological, anatomical, chemical and photosynthetic traits in Quercus ilex subsp. rotundifolia Lam., an evergreen oak with high leaf longevity. All photosynthetic traits decreased with increasing leaf age. The relative change in cell wall thickness (Tcw) was less than in chloroplast surface area exposed to intercellular air space (Sc/S), and Sc/S was a key anatomical trait explaining variations in gm and AN among different age classes. The reduction of Sc/S was related to ultrastructural changes in chloroplasts associated to leaf aging, with a concomitant reduction in cytoplasmic nitrogen. Changes in leaf anatomy and biochemistry were responsible for the age-dependent modifications in gm and AN. These findings revealed a gradual physiological deterioration related to the dismantling of the photosynthetic apparatus in older leaves of Q. ilex subsp. rotundifolia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpac049 | DOI Listing |
Persoonia
June 2025
Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
Novel species of fungi described in this study include those from various countries as follows: , on leaf spots of . , on mossy soil, among leaf litter, among leaf litter, in leaf litter, in leaf litter, on soil in mixed forest, in long decayed wood litter, as an endophyte from healthy leaves of , on culms of on leaves of , on leaves of on leaves of . , on living leaf of from soil, on living leaves of unidentified palm species, from stalks of , on living leaves of native bamboo, on living leaves of unidentified , on living leaves of unidentified , (incl.
View Article and Find Full Text PDFJ Environ Manage
November 2024
Department of Botany, University of Granada, Avda. De Fuentenueva s/n, 18071, Granada, Spain.
Little is known about the effects of tree shelters on the early response of oak seedlings produced by acorn seeding. In this paper, we explore the effects on holm oak (Quercus ilex L. subsp.
View Article and Find Full Text PDFBMC Plant Biol
September 2024
Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain.
Fungal Syst Evol
June 2024
Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.
Novel species of fungi described in this study include those from various countries as follows: , in leaves of , among deep leaf litter, from uredinium of on , on well-rotted twigs and litter in mixed wet sclerophyll and subtropical rainforest. , on twigs of , on bark, in savannas with shrubs and trees. , on leaves of , (incl.
View Article and Find Full Text PDFLife (Basel)
July 2024
Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.