Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrogen removal pathways of simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) at low dissolved oxygen (0.3 mg/L) and temperature (10℃) were explored to understand nitrogen removal mechanisms. Biological nitrogen and phosphorus removal was sustained with total inorganic nitrogen removal, phosphorus removal, and simultaneous nitrification and denitrification (SND) efficiencies of 62.6%, 97.3%, and 31.2%, respectively. The SND was observed in the first 2 h of the aerobic phase and was attributed to denitrifying ordinary heterotrophic organisms using readily biodegradable chemical oxygen demand and denitrifying phosphorus accumulating organisms (DPAOs), which removed 15.1% and 12.2% of influent nitrogen, respectively. A phosphorus accumulating organism (PAO)-rich community was indicated by stoichiometric ratios and supported by 16S rRNA gene analysis, with Dechloromonas, Zoogloea, and Paracoccus as DPAOs, and Ca. Accumulibacter and Tetrasphaera as PAOs. Even though Ca. Competibacter (10.4%) was detected, limited denitrifying glycogen accumulating organism denitrification was observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127177DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
16
phosphorus removal
16
simultaneous nitrification
12
nitrification denitrification
12
removal pathways
8
pathways simultaneous
8
denitrification phosphorus
8
dissolved oxygen
8
nitrogen phosphorus
8
phosphorus accumulating
8

Similar Publications

Treatment of non-sterile biogas slurry from a pig farm using microalgae isolated from the activated sludge of sewage plants.

Microbiol Spectr

September 2025

Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.

Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.

View Article and Find Full Text PDF

Microbial desalination cells (MDCs) have traditionally employed simplified NaCl solutions as feedwater for synchronous desalination and bioenergy recovery. Nevertheless, the specific mechanisms by which MDCs remove complex multi-ions from saline wastewater remain obscure. This study thoroughly investigated ion migration, bioelectrochemical dynamics, and microbial ecological responses across three distinct configurations: monovalent ions - PMDC, divalent cations - CMDC and anions - AMDC.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

Evaluation of the impact of sugarcane trash in situ incorporation on soil health in North Haryana.

Environ Monit Assess

September 2025

Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.

India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.

View Article and Find Full Text PDF

The increasing pollution of water bodies from various industrial wastewater discharges has raised significant environmental concerns because these effluents contain toxic, nonbiodegradable compounds that pose serious risks to living organisms. In particular, the textile and pharmaceutical industries routinely use dyes that severely degrade water quality and lead to significant environmental issues. Therefore, effective removal of these dyes from industrial wastewater is crucial for mitigating pollution.

View Article and Find Full Text PDF