98%
921
2 minutes
20
Background: In humans, after fertilization, the zygote divides into two 2n diploid daughter blastomeres. During this division, DNA is replicated, and the remaining mutually exclusive genetic mutations in the genome of each cell are called post-zygotic variants. Using these somatic mutations, developmental lineages can be reconstructed. How these two blastomeres are contributing to the entire body is not yet identified. This study aims to evaluate the cellular contribution of two blastomeres of 2-cell embryos to the entire body in humans using post-zygotic variants based on whole genome sequencing.
Methods: Tissues from different anatomical areas were obtained from five donated cadavers for use in single-cell clonal expansion and bulk target sequencing. After conducting whole genome sequencing, computational analysis was applied to find the early embryonic mutations of each clone. We developed our in-house bioinformatics pipeline, and filtered variants using strict criteria, composed of mapping quality, base quality scores, depth, soft-clipped reads, and manual inspection, resulting in the construction of embryological phylogenetic cellular trees.
Results: Using our in-house pipeline for variant filtering, we could extract accurate true positive variants, and construct the embryological phylogenetic trees for each cadaver. We found that two daughter blastomeres, L1 and L2 (lineage 1 and 2, respectively), derived from the zygote, distribute unequally to the whole body at the clonal level. From bulk target sequencing data, we validated asymmetric contribution by means of the variant allele frequency of L1 and L2. The asymmetric contribution of L1 and L2 varied from person to person.
Conclusion: We confirmed that there is asymmetric contribution of two daughter blastomeres from the first division of the zygote across the whole human body.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294097 | PMC |
http://dx.doi.org/10.1007/s13770-022-00443-7 | DOI Listing |
Acta Crystallogr E Crystallogr Commun
September 2025
US Naval Research Laboratory, Center for Biomolecular Science and Engineering, 4555 Overlook Ave., SW Washington, DC 20375, USA.
5-(3-Nitro-1-pyrazol-4-yl)tetra-zole, CHNO, was synthesized from cyano-pyrazole the Huisgen reaction. The asymmetric unit contains two mol-ecules, each displaying notable torsion between the pyrazole and tetra-zole systems. N-H⋯N hydrogen bonds and π-stacking inter-actions create a double-wide mol-ecular chain, while further N-H⋯N and weaker C-H⋯N inter-actions stitch these chains into a supra-molecular hydrogen-bonded framework.
View Article and Find Full Text PDFIUCrdata
August 2025
Chemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen.
The asymmetric unit of the title compound, CHNO, contains two coplanar mol-ecules ( and ) completely located on mirror planes. In the crystal, N-H⋯O, N-H⋯N, C-H⋯O and C-H⋯N hydrogen bonds link the mol-ecules into sheets parallel to (010). There are neither significant π-π nor C-H⋯π(ring) inter-actions.
View Article and Find Full Text PDFAm J Bot
September 2025
Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
Premise: Floristic exchanges between Oceania and tropical Asia have significant asymmetrical characteristics. Many groups of plants have dispersed southward from Asia to Oceania, whereas a northward dispersal from Oceania to tropical Asia (i.e.
View Article and Find Full Text PDFBioorg Chem
August 2025
Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum, Türkiye. Electronic address:
Compounds that possess a benzene sulfonamide structure are utilized in a wide range of fields. Benzene bissulfonamides are also important compounds in the field of organic and medicinal chemistry. Based on these features, a series of benzene bissulfonamides were synthesized in moderate yields starting from 3-methylanisole.
View Article and Find Full Text PDFCortex
August 2025
University of Pittsburgh, Department of Ophthalmology, Pittsburgh PA 15219, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh PA 15213, USA.
The neural circuitry engaged in supporting eye movements has been well characterized, but fundamental questions remain about the necessity and sufficiency of the individual hemispheric contributions. To gain a better understanding of the neural correlates of oculomotor control, we measured horizontal smooth pursuit tracking behavior in 14 patients following childhood hemispherectomy. Relative to developmentally typical age-matched controls, patients exhibited a bilateral and asymmetric pursuit deficit with reduced ipsilesional but elevated contralesional eye speeds, and asymmetric accompanying 'catch up' saccades.
View Article and Find Full Text PDF