98%
921
2 minutes
20
Background: Climate change has been increasing at an unprecedented rate in the last decades. Global warming has been causing a variety of impacts in marine ecosystems, including shifts in the geographical ranges of species. The north-western Iberian Peninsula coast is particularly interesting to study distribution shifts as it features a strong latitude thermal gradient, establishing a biogeographical transitional region where several cold- and warm-adapted species have their equatorward or poleward distributions. In the early 2000s, it appeared that, while warm-water species were already responding to warming, cold-water species did not display a coherent response. It is now necessary to gather up-to-date data on the distribution of the same group of species to understand if current patterns of change confirm or deny those observed back then, which may give us important clues about the mechanisms setting species limits in the area.
New Information: This study provides a fine-scale description of the occurrence of intertidal macroalgae species in the rocky shores of the north-western Iberian coast. Specifically, the spatial distribution and semi-quantitative abundance of 34 native and invasive species were assessed at 70 wave-exposed locations. This included 19 species of cold-water affinity, 10 species of warm-water affinity and five neutral species. When contrasted with historical observations, these new data can be used to quantify and map biodiversity change in the region, as well as help understanding the mechanisms constraining species distributions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9005454 | PMC |
http://dx.doi.org/10.3897/BDJ.10.e80798 | DOI Listing |
Genome Biol
September 2025
Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFNat Food
September 2025
Department of Zoology, University of Cambridge, Cambridge, UK.
Agriculturally driven habitat degradation and destruction is the biggest threat to global biodiversity. Yet the impact of different foods and where they are produced on species extinction risks, and the mitigation potential of different interventions, remain poorly quantified. Here we link the LIFE biodiversity metric-a high-resolution global layer describing the marginal impact of land use on extinctions of ~30,000 vertebrate species-with food consumption and production data and provenance modelling.
View Article and Find Full Text PDFProtoplasma
September 2025
Vavilov Institute of General Genetics RAS, Moscow, Russia.
Large interstitial telomeric regions are considered remnants and markers of chromosomal rearrangements or a result of several suggested molecular mechanisms of telomere repeats accumulation. More rare are cases when large interstitial repeats are found not close to, but at a distance from the centromere. However, synapsis, recombination, and effects on chromatin near these regions during meiotic prophase I have not been sufficiently studied.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Environment and Life Science, KSKV Kachchh University, Bhuj, Gujarat, 370 001, India.
India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.
View Article and Find Full Text PDF