Linking mixing and flow topology in porous media: An experimental proof.

Phys Rev E

Chair of Hydrology and River Basin Management, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany.

Published: March 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transport processes in porous media are controlled by the characteristics of the flow field which are determined by the porous material properties and the boundary conditions of the system. This work provides experimental evidence of the relation between mixing and flow field topology in porous media at the continuum scale. The setup consists of a homogeneously packed quasi-two-dimensional flow-through chamber in which transient flow conditions, dynamically controlled by two external reservoirs, impact the transport of a dissolved tracer. The experiments were performed at two different flow velocities, corresponding to Péclet numbers of 191 and 565, respectively. The model-based interpretation of the experimental results shows that high values of the effective Okubo-Weiss parameter, driven by the changes of the boundary conditions, lead to high rates of increase of the Shannon entropy of the tracer distribution and, thus, to enhanced mixing. The comparison between a hydrodynamic dispersion model and an equivalent pore diffusion model demonstrates that despite the spatial and temporal variability in the hydrodynamic dispersion coefficients, the Shannon entropy remains almost unchanged because it is controlled by the Okubo-Weiss parameter. Overall, our work demonstrates that under highly transient boundary conditions, mixing dynamics in homogeneous porous media can also display complex patterns and is controlled by the flow topology.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.105.035105DOI Listing

Publication Analysis

Top Keywords

porous media
16
boundary conditions
12
mixing flow
8
flow topology
8
topology porous
8
flow field
8
okubo-weiss parameter
8
shannon entropy
8
hydrodynamic dispersion
8
flow
6

Similar Publications

Proto-SLIPS: Slippery Liquid-Infused Surfaces that Release Highly Water-Soluble Agents.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.

Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

SnS (tin disulfide) is a promising anode active material for lithium-ion batteries (LIBs) due to its high theoretical capacity and low material cost. Conventional synthesis methods, such as solvothermal, hydrothermal, and solid-state, require long synthesis times, the use of solvents and surfactants, and several separation steps. However, the preparation of coated SnS composites using liquid media is even more complex, requiring suitable precursors, compatible solvents, and potentially several steps.

View Article and Find Full Text PDF

Porous Environmental Polarity as a Critical Descriptor for Efficient Proton Conductivity in Metal-Organic Frameworks.

Langmuir

September 2025

Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

Recent years have witnessed growing research interest in proton-conducting metal-organic frameworks (MOFs) owing to the characteristics of highly ordered pores, oriented packing of crystals, and particularly designable structures. However, how to construct a suitable microenvironment in MOF pores to form optimal proton transport pathways remains challenging. In this study, four MOFs with similar porous diameters but different microenvironments have been screened to study how porous environments influence proton conduction for the first time.

View Article and Find Full Text PDF

Vertical cutoff wall is widely used as one of the in-situ remediation technologies for contaminated sites. In this paper, considering the unsaturated characteristics of porous media, a three-dimensional pollutant transport model of inner aquifer-vertical cutoff wall-outer aquifer is established. The main conclusions are as follows.

View Article and Find Full Text PDF