Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Total gastrectomy (TG) with lymph node (LN) dissection is recommended for early gastric cancer (EGC) but is not indicated for endoscopic resection (ER). We aimed to identify patients who could avoid TG by establishing a scoring system for predicting lymph node metastasis (LNM) in proximal EGCs.

Materials And Methods: Between January 2003 and December 2017, a total of 1,025 proximal EGC patients who underwent TG with LN dissection were enrolled. Patients who met the absolute ER criteria based on pathological examination were excluded. The pathological risk factors for LNM were determined using univariate and multivariate logistic regression analyses. A scoring system for predicting LNM was developed and applied to the validation group.

Results: Of the 1,025 cases, 100 (9.8%) showed positive LNM. Multivariate analysis confirmed the following independent risk factors for LNM: tumor size >2 cm, submucosal invasion, lymphovascular invasion (LVI), and perineural invasion (PNI). A scoring system was created using the four aforementioned variables, and the areas under the receiver operating characteristic curves in both the training (0.85) and validation (0.84) groups indicated excellent discrimination. The probability of LNM in mucosal cancers without LVI or PNI, regardless of size, was <2.9%.

Conclusions: Our scoring system involving four variables can predict the probability of LNM in proximal EGC and might be helpful in determining additional treatment plans after ER, functioning as a good indicator of the adequacy of treatments other than TG in high surgical risk patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980596PMC
http://dx.doi.org/10.5230/jgc.2022.22.e3DOI Listing

Publication Analysis

Top Keywords

scoring system
12
total gastrectomy
8
early gastric
8
gastric cancer
8
lymph node
8
system predicting
8
risk factors
8
factors lnm
8
lnm
6
scoring
4

Similar Publications

Leveraging GPT-4o for Automated Extraction and Categorization of CAD-RADS Features From Free-Text Coronary CT Angiography Reports: Diagnostic Study.

JMIR Med Inform

September 2025

Departments of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, China, 86 18922109279, 86 20852523108.

Background: Despite the Coronary Artery Reporting and Data System (CAD-RADS) providing a standardized approach, radiologists continue to favor free-text reports. This preference creates significant challenges for data extraction and analysis in longitudinal studies, potentially limiting large-scale research and quality assessment initiatives.

Objective: To evaluate the ability of the generative pre-trained transformer (GPT)-4o model to convert real-world coronary computed tomography angiography (CCTA) free-text reports into structured data and automatically identify CAD-RADS categories and P categories.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF

Background: The Brazilian project, launched in 2021, aims to establish a nationwide injury registry that systematically collects detailed information on incidents and individuals across the country, regardless of injury severity. The registry integrates information from prehospital and hospital care, various health systems lacking interoperability, and data from sectors such as firefighters and police. Its primary aim is to enhance health surveillance by providing timely, high-quality information that guides prevention strategies and informs policymaking.

View Article and Find Full Text PDF

Novel 3d-printed Coaxial Light Microscope Adapter for Ophthalmic Wet Lab.

J Cataract Refract Surg

September 2025

Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.

Purpose: To compare the usability and training effectiveness of a 3D-printed coaxial illumination system mounted on an off-the-shelf stereo-microscope to a professional ophthalmic surgical microscope, in cataract surgery simulation.

Setting: Ophthalmology Lab, Ophthalmology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.

Design: Prospective randomized crossover study.

View Article and Find Full Text PDF