98%
921
2 minutes
20
Sludge-derived biochar (BS) was prepared by pyrolyzing municipal sludge at different temperatures and was used to recover NH -N and PO -P from urine. The effects of dosage, adsorption time, and urine concentration on the adsorption of NH -N and PO -P were investigated, and the adsorbed BS was used as a fertilizer to study its effect on the growth of pakchoi cabbage. The Elovich model was more consistent with the adsorption processes of NH -N and PO -P. Both the NH -N and PO -P adsorption isotherm model agreed with the Redlich-Peterson model. The Langmuir model showed that the largest adsorption capacity of BS600 for NH -N and PO -P could reach 114.64 mg g and 31.05 mg g, respectively. The NH -N adsorption mechanism of BS may have complexation with O-containing functional groups and precipitation reactions, while the removal mechanism of PO -P was co-precipitation. The pot experiment demonstrated that adsorbed BS600 can better promote the growth of pakchoi cabbage with the same amount of addition. With the addition of 5% adsorbed BS600, the weight of cabbage was 64.49 g heavier than without the addition of BS600. This research provided theoretical support for the recovery of NH -N and PO -P from urine as a fertilizer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8981036 | PMC |
http://dx.doi.org/10.1039/d1ra08558a | DOI Listing |
J Mass Spectrom
October 2025
Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
The laboratory analysis of new psychoactive substances and related drugs is crucial for accurate clinical and forensic diagnosis of poisonings. Given this, a new LC-MS/MS method for analyzing hallucinogens, synthetic cathinones, and synthetic cannabinoids in urine was developed. Urine samples were extracted using a liquid-liquid extraction protocol optimized via a multivariate experimental design.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
GuangDong Engineering Technology Research Center of Antibody Drug and Immunoassay, Department of Biological Sciences and Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Illicit drug abuse poses a significant global threat to public health and social security, highlighting the urgent need for rapid, sensitive, and versatile detection technologies. To address the limitations of traditional chromatographic techniques-such as high costs and slow response times-and the drawbacks of conventional immunochromatographic sensors (ICS), including low sensitivity and non-intuitive signal outputs, a fluorescence-quenching ICS (FQICS) was developed. This sensor leverages fluorescence resonance energy transfer (FRET) between aggregation-induced emission fluorescent microspheres (AIEFMs) and gold nanoparticles (AuNPs).
View Article and Find Full Text PDFBackgroundRAY1216 is an alpha-ketoamide-based peptide inhibitor of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) major protease (M). This study evaluated the absorption, distribution, metabolism and excretion of [C]-labelled RAY1216 by oral administration.Research design and methodsThis phase Ι study was designed to assess the pharmacokinetics, mass balance and metabolic pathways in 6 healthy Chinese adult men after a single fasting oral administration of 240 mL (containing 400 mg/100 μCi) [C] RAY1216.
View Article and Find Full Text PDFDrug Test Anal
September 2025
Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
Dried blood spots (DBS) have emerged as a promising complement, and in some settings, an alternative, to urine for anabolic androgenic steroid (AAS) testing, offering advantages such as minimal invasiveness, simplified storage, and transportation. This study evaluated two DBS collection devices-cellulose-based Capitainer-B50 and polymer-based Tasso-M20-and compared results with traditional urine analysis. Ten self-reported AAS users were recruited and provided matched urine and DBS samples.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.
This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.
View Article and Find Full Text PDF