Similar Publications

One of the most critical steps in the treatment of spent nuclear fuel is the removal of americium (Am) and curium (Cm) ions from radioactive wastewater. The use of new materials with high surface areas, such as graphene, has been considered a promising solution to this issue. Therefore, understanding the mechanism by which Am and Cm ions are adsorbed onto the graphene surface in aqueous solutions is of paramount importance.

View Article and Find Full Text PDF

Selectively separating Am(III) from nuclear waste streams is an extremely challenging task due to the presence of the trivalent lanthanides and Cm(III). 1,10-Phenanthroline ligands decorated with 1,2,4-triazines or 1,2,3-triazoles have emerged as promising extractants for achieving such separation. In this article, a new robust synthetic pathway towards the hydrophilic, CHON compliant bistriazoylphenanthroline ligand BTrzPhen-tetraol is reported.

View Article and Find Full Text PDF

Bis-1,2,4-triazine ligands are amongst the most promising soft N-donor ligands for the partitioning of trivalent actinides from trivalent lanthanides; a key separation proposed in the future reprocessing of spent nuclear fuels. In an effort to improve the extraction properties of these benchmark ligands, we propose herein a general ligand design approach that is inspired by the field of drug discovery, and we apply it to a new class of ligands in which the bidentate 3-(2-pyridyl)-1,2,4-triazine unit of the benchmark ligands is replaced by a bidentate 1,2,4-triazine-3-carboxamide unit. A series of nine novel ligands were synthesized by reactions of readily available ethyl 1,2,4-triazine-3-carboxylate building blocks with different polyamine cores and evaluated for their ability to extract and separate Am(III) and Cm(III) from Eu(III).

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on the coordination chemistry of trivalent lanthanide (Ln(III)) and actinide (An(III)) complexes using a specific ligand, 2,6-bis(5-(-butyl)-1-pyrazol-3-yl)pyridine (C4-BPP).
  • Time-resolved laser fluorescence spectroscopy (TRLFS) indicated that the complex formation is more favorable for curium (Cm(III)) than europium (Eu(III)), with calculated stability constants (log β') demonstrating this preference.
  • NMR measurements showed significant differences in the nitrogen bonding characteristics between americium (Am(III)) and lanthanide complexes, revealing a stronger covalent bond in the
View Article and Find Full Text PDF

Separation of lanthanide (Ln) and minor actinide (MA) elements and mutual separation between minor actinide elements ( Am(III) and Cm(III)) represent a crucial undertaking. However, separating these elements poses a significant challenge owing to their highly similar physicochemical properties. Asymmetric N-heterocyclic ligands such as -ethyl-6-(1-pyrazol-3-yl)--(-tolyl)picolinamide (Et--Tol-A-PzPy) and -ethyl--(-tolyl)-1,10-phenanthroline-2-carboxamide (ETPhenAm) have recently received considerable attention in the separation of MAs over Ln from acid solutions.

View Article and Find Full Text PDF