Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The C(sp)-H bond oxygenation of the cyclopropane-containing mechanistic probes 6--butylspiro[2.5]octane and spiro[2.5]octane with hydrogen peroxide catalyzed by manganese complexes bearing aminopyridine tetradentate ligands has been studied. Mixtures of unrearranged and rearranged oxygenation products (alcohols, ketones, and esters) are obtained, suggesting the involvement of cationic intermediates and the contribution of different pathways following the initial hydrogen atom transfer-based C-H bond cleavage step. Despite such a complex mechanistic scenario, a judicious choice of the catalyst structure and reaction conditions (solvent, temperature, and carboxylic acid) could be employed to resolve these oxygenation pathways, leading, with the former substrate, to conditions where a single unrearranged or rearranged product is obtained in good isolated yield. Taken together, the work demonstrates an unprecedented ability to precisely direct the chemoselectivity of the C-H oxidation reaction, discriminating among multiple pathways. In addition, these results conclusively demonstrate that stereospecific C(sp)-H oxidation can take place via a cationic intermediate and that this path can become exclusive in governing product formation, expanding the available toolbox of aliphatic C-H bond oxygenations. The implications of these findings are discussed in the framework of the development of synthetically useful C-H functionalization procedures and the associated mechanistic features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9052745PMC
http://dx.doi.org/10.1021/jacs.2c01466DOI Listing

Publication Analysis

Top Keywords

oxygenation pathways
8
cationic intermediates
8
unrearranged rearranged
8
c-h bond
8
resolving oxygenation
4
pathways
4
pathways manganese-catalyzed
4
manganese-catalyzed csp-h
4
csp-h functionalization
4
functionalization radical
4

Similar Publications

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

is a human fungal pathogen that survives and proliferates within phagocytic immune cells. To sustain growth in the nutrient-limited phagosome environment, the pathogenic yeast scavenges available carbon sources, which must be metabolized through central carbon metabolism for respiration and biomass synthesis. However, carbon metabolic pathways operating in the pathogenic yeast phase have not been extensively mapped.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Lanthanum-Induced Gradient Fields in Asymmetric Heterointerface Catalysts for Enhanced Oxygen Electrocatalysis.

Adv Mater

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.

Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).

View Article and Find Full Text PDF

Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.

View Article and Find Full Text PDF