Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Accurate prediction of binding affinity is a primary objective in structure-based drug discovery. A free energy perturbation (FEP) method based on molecular dynamics simulation shows great promise for protein-ligand binding affinity predictions. However, accurate calculation of binding affinity for allosteric inhibitors remains unknown and elusive, which hampers the discovery of allosteric inhibitors. Allosteric inhibitors exhibit several significant advantages over orthosteric inhibitors including higher specificity and lower side effects. Allosteric inhibitors against SHP2 are thought to be beneficial not only for diseases related to metabolism, but also for cancer, which make SHP2 a potential drug target. However, high structural sensitivity makes structural optimization of SHP2 allosteric inhibitors face challenges. Herein, we calculated the absolute binding free energy of SHP2 allosteric inhibitors using the FEP method by employing different λ-windows/simulation time sampling strategies. A simulation run with 32 λ-windows/64 ps sampling strategy delivered an excellent correlation ( = 0.96) and an unprecedented low mean absolute error of 0.5 kcal mol between predicted binding free energies and experimental ones, outperforming the MM/PBSA method. Our study demonstrates the possibility to accurately calculate the absolute binding free energy of allosteric inhibitors using FEP, which offers exciting prospects for the discovery of more effective allosteric inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp00405d | DOI Listing |