98%
921
2 minutes
20
Plants deploy molecular, physiological, and anatomical adaptations to cope with long-term water-deficit exposure, and some of these processes are controlled by circadian clocks. Circadian clocks are endogenous timekeepers that autonomously modulate biological systems over the course of the day-night cycle. Plants' responses to water deficiency vary with the time of the day. Opening and closing of stomata, which control water loss from plants, have diurnal responses based on the humidity level in the rhizosphere and the air surrounding the leaves. Abscisic acid (ABA), the main phytohormone modulating the stomatal response to water availability, is regulated by circadian clocks. The molecular mechanism of the plant's circadian clock for regulating stress responses is composed not only of transcriptional but also posttranscriptional regulatory networks. Despite the importance of regulatory impact of circadian clock systems on ABA production and signaling, which is reflected in stomatal responses and as a consequence influences the drought tolerance response of the plants, the interrelationship between circadian clock, ABA homeostasis, and signaling and water-deficit responses has to date not been clearly described. In this review, we hypothesized that the circadian clock through ABA directs plants to modulate their responses and feedback mechanisms to ensure survival and to enhance their fitness under drought conditions. Different regulatory pathways and challenges in circadian-based rhythms and the possible adaptive advantage through them are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8997731 | PMC |
http://dx.doi.org/10.3390/cells11071154 | DOI Listing |
FASEB J
September 2025
Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.
The molecular clock exhibits distinct characteristics across various tissues and can be synchronized by particular stimuli. Furthermore, there is an intricate interplay among the molecular clocks within different tissues. In this context, we present an overview of the tissue-specific molecular clock and discuss pivotal nonphotic regulators that govern the host's circadian rhythms and metabolic processes.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, Saskatchewan, Canada.
Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.
View Article and Find Full Text PDFFungal Biol
October 2025
Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. Electronic address:
In many model organisms, the circadian system has been proposed to comprise multiple oscillators that interact to promote accuracy of the clock as well as intricacies of rhythmic outputs. In Neurospora crassa, the circadian transcriptional/translational loop comprising of the FRQ (Frequency) and WCC (White Collar Complex) proteins has been instrumental in explaining many attributes of the clock including entrainment and rhythms in development and gene expression; in addition, some non-circadian oscillations can be unmasked when the FRQ-WCC feedback loop is eliminated. These rhythms have often lost defining circadian characteristics and are potentially controlled by other oscillators, termed FRQ-less oscillators (FLOs) in Neurospora.
View Article and Find Full Text PDFImmun Inflamm Dis
September 2025
School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
Aim: Autoimmune diseases, characterized by the immune system mistakenly attacking the body's own tissues, are a growing global concern, with increasing prevalence. The circadian clock is a fundamental regulator of physiological processes, critically modulating immune functions. This review explores the intricate connections between circadian rhythms and immune responses in autoimmune pathogenesis and how disruptions exacerbate disease.
View Article and Find Full Text PDFR Soc Open Sci
September 2025
Department of Biology, University of Antwerp, Antwerp, Belgium.
Circadian clocks play a crucial role in regulating the sleep-wake rhythm of organisms, aligning their activity with fluctuating environmental factors, such as light intensity. Still, significant and consistent interindividual differences in the timing of activity, known as chronotypes, have been observed across various species, but whether this affects fitness is still unknown. While previous studies have primarily focused on annual reproductive success, few studies have examined associations between chronotype and lifetime reproductive success.
View Article and Find Full Text PDF