Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Porous membranes with fascinating super-wettable surface and tunable porous architecture for oil-water separation have been developed rapidly, however, the serious secondary marine pollution caused by the non-degradable defectiveness of membranes themselves is still a thorny problem. Herein, we create an eco-friendly membrane with biomimetic cobweb-like nanostructure via assembling two-dimensional bacterial cellulose nanonets on the starch nanofibrous membrane on a large scale. The obtained novel composite membranes exhibit integrated properties of sub-micron pore size, ultrahigh porosity, superhydrophilicity, and underwater superoleophobicity, stemming from the synergistic effect of the hydrated nanonet-skin-layer and porous starch matrix. By virtue of the narrow-distributed sub-micron pores, ultrahigh porosity, and ultrathin thickness, the resulting membrane shows outstanding performance of excellent separation efficiency (up to 99.996%), high percolation flux (maximum of 15968 L m h), well surpassing the conventional microfiltration membranes. More significantly, with the advantage of biodegradability and anti-oil-fouling property, the membrane could serve as the robust platform for long-term wastewater remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.128858 | DOI Listing |