Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nanomedicines are highly promising for cancer therapy due to their minimal side effects. However, little is known regarding their host immune response, which may limit their clinical efficacy and applications. Here, we find that cisplatin (CDDP)-loaded poly(l-glutamic acid)--methoxy poly(ethylene glycol) complex nanoparticles (CDDP-NPs) elicit a strong antitumor CD8 T cell-mediated immune response in a tumor-bearing mouse model compared to free CDDP. Mechanistically, the sustained retention of CDDP-NPs results in persistent tumor MHC-I overexpression, which promotes the formation of MHC-I-antigen peptide complex (pMHC-I), enhances the interaction between pMHC-I and T cell receptor (TCR), and leads to the activation of TCR signaling pathway and CD8 T cell-mediated immune response. Furthermore, CDDP-NPs upregulate the costimulatory OX40 on intratumoral CD8 T cells, and synergize with the agonistic OX40 antibody (aOX40) to suppress tumor growth by 89.2%. Our study provides a basis for the efficacy advantage of CDDP-based nanomedicines and immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c00478 | DOI Listing |