98%
921
2 minutes
20
Plant metabolites are important for plant development and human health. Plants of celery ( L.) with different-colored petioles have been formed in the course of long-term evolution. However, the composition, content distribution, and mechanisms of accumulation of metabolites in different-colored petioles remain elusive. Using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), 1159 metabolites, including 100 lipids, 72 organic acids and derivatives, 83 phenylpropanoids and polyketides, and several alkaloids and terpenoids, were quantified in four celery cultivars, each with a different petiole color. There were significant differences in the types and contents of metabolites in celery with different-colored petioles, with the most striking difference between green celery and purple celery, followed by white celery and green celery. Annotated analysis of metabolic pathways showed that the metabolites of the different-colored petioles were significantly enriched in biosynthetic pathways such as anthocyanin, flavonoid, and chlorophyll pathways, suggesting that these metabolic pathways may play a key role in determining petiole color in celery. The content of chlorophyll in green celery was significantly higher than that in other celery cultivars, yellow celery was rich in carotenoids, and the content of anthocyanin in purple celery was significantly higher than that in the other celery cultivars. The color of the celery petioles was significantly correlated with the content of related metabolites. Among the four celery cultivars, the metabolites of the anthocyanin biosynthesis pathway were enriched in purple celery. The results of quantitative real-time polymerase chain reaction (qRT-PCR) suggested that the differential expression of the chalcone synthase () gene in the anthocyanin biosynthesis pathway might affect the biosynthesis of anthocyanin in celery. In addition, HPLC analysis revealed that cyanidin is the main pigment in purple celery. This study explored the differences in the types and contents of metabolites in celery cultivars with different-colored petioles and identified key substances for color formation. The results provide a theoretical basis and technical support for genetic improvement of celery petiole color.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002244 | PMC |
http://dx.doi.org/10.1631/jzus.B2100806 | DOI Listing |
Sci Rep
September 2025
Division of vegetable science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, 190025, J&K, India.
Indigenous medicinal plants, enriched with bioactive compounds such as alkaloids, flavonoids, and polyphenolic components, exhibit significant disinfectant, antiseptic, and antimicrobial properties. This study aimed to explore the antibacterial potential of celery leaf (Apium graveolens L.) extract for its application in hand sanitizer formulations.
View Article and Find Full Text PDFJ Oleo Sci
August 2025
Graduate School of Sciences and Technology for Innovation, Yamaguchi University.
This study aimed to investigate the aroma compounds in fresh leaves and their dried powders in Angelica acutiloba Kitagawa (yamato-tōki). Essential oils were extracted from the dried powders of leaves in A. acutiloba Kitagawa using a simultaneous distillation extraction (SDE) technique and analyzed using GC/MS.
View Article and Find Full Text PDFPlant J
September 2025
Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain.
Despite being an essential micronutrient and its recent classification as a beneficial macronutrient, chloride (Cl) has traditionally been considered of limited agricultural relevance and a potentially toxic saline ion. This study provides the first comprehensive demonstration of the quantitative and qualitative importance of Cl during early vegetative development (EVD) of tobacco and Arabidopsis thaliana plants. During this developmental stage, these and other species (including celery, lettuce, Swiss chard, spinach, squash, tomato, chili pepper, eggplant, and perennial ryegrass) exhibit the highest demand and transport rate of this non-assimilable mineral nutrient to maximise growth of these herbaceous and also woody (such as citrus and olive) species.
View Article and Find Full Text PDFJ Xenobiot
August 2025
Department of Analytical Chemistry and Quality Control, Faculty of Technology and Metallurgy, University of Belgrade, 11120 Belgrade, Serbia.
This study investigated pesticide residues in 580 vegetable samples collected from markets in Serbia, encompassing potatoes, carrots, celery, radishes, horseradish, ginger, onions, and leeks. In total, 33 distinct pesticides were detected using validated HPLC-MS/MS and GC-MS/MS analytical methods. Multiple residues were identified in 19 samples, while 29 samples exceeded established maximum residue levels (MRLs).
View Article and Find Full Text PDFBMC Genom Data
August 2025
Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, South Africa.
Objectives: This amplicon metagenomic study examines the relative abundance, taxonomic profiles and community structure of bacterial and fungal communities associated with the roots of parsley (Petroselinum crispum) and celery (Apium graveolens) under monocropping and intercropping systems. The study aims to provide a baseline understanding of how intercropping influences rhizosphere microbial dynamics.
Data Description: The dataset provides insight into the effects of parsley-celery intercropping system on soil microbial richness, diversity and community structure.