Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Oncolytic virus immunotherapy is emerging as a novel therapeutic approach for cancer treatment. Immunotherapy clinical drug candidate V937 is currently in phase I/II clinical trials and consists of a proprietary formulation of Coxsackievirus A21 (CVA21), which specifically infects and lyses cells with overexpressed ICAM-1 receptors in a range of tumors. Mature Coxsackievirus virions, consisting of four structural virion proteins, (VPs) VP1, VP2, VP3, and VP4, and the RNA genome, are the only viral particles capable of being infectious. In addition to mature virions, empty procapsids with VPs, VP0, VP1, and VP3, and other virus particles are produced in V937 production cell culture. Viral protein VP0 is cleaved into VP2 and VP4 after RNA genome encapsidation to form mature virions. Clearance of viral particles containing VP0, and quantification of viral protein distribution are important in V937 downstream processing. Existing analytical methods for the characterization of viral proteins and particles may lack sensitivity or are low throughput. We developed a sensitive and robust reverse-phase ultra-performance chromatography method to separate, identify, and quantify all five CVA21 VPs. Quantification of virus capsid concentration and empty/full capsid ratio was achieved with good linearity, accuracy, and precision. ClinicalTrials.gov ID: NCT04521621 and NCT04152863.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9347376PMC
http://dx.doi.org/10.1089/hum.2022.013DOI Listing

Publication Analysis

Top Keywords

viral protein
12
reverse-phase ultra-performance
8
ultra-performance chromatography
8
chromatography method
8
vp4 rna
8
rna genome
8
viral particles
8
mature virions
8
viral
6
method oncolytic
4

Similar Publications

Influenza virus neuraminidase (NA) is a crucial target for protective antibodies, yet the development of recombinant NA protein as a vaccine has been held back by instability and variable expression. We have taken a pragmatic approach to improving expression and stability of NA by grafting antigenic surface loops from low-expressing NA proteins onto the scaffold of high-expressing counterparts. The resulting hybrid proteins retained the antigenic properties of the loop donor while benefiting from the high-yield expression, stability, and tetrameric structure of the loop recipient.

View Article and Find Full Text PDF

Feline infectious peritonitis virus (FIPV) can cause an immune-mediated disease that is fatal to felines, but there is a lack of clinically effective protection conferred by vaccines. The methyltransferase (MTase) activity of the coronavirus nonstructural proteins nsp14 and nsp16 affects virulence, but there are no studies on the effect of nsp14 and nsp16 mutations affecting enzyme activity on the virulence of FIPV. In this study, we successfully rescued two mutant strains based on the previous infectious clone QS-79, named FIPV QS-79 dnsp14 and dnsp16, by mutating the MTase active sites of nsp14 (N415) and nsp16 (D129).

View Article and Find Full Text PDF

Discontinuing antivirals in chronic hepatitis B virus (HBV) 'e' antigen negative infection can enhance HBV surface antigen (HBsAg) loss but risks complications. We modelled the clinical impact of discontinuing antivirals in chronic HBV. We developed a Markov state model with Monte Carlo simulation of chronic HBV to compare continuation of antiviral therapy with 3 strategies of cessation and reinitiation for: (1) virologic relapse, (2) clinical relapse, or (3) hepatitis flare.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infection is a global health challenge, with the World Health Organization (WHO) targeting its elimination by 2030. Jordan lacks sufficient data on HBV epidemiology, including prevalence, incidence and clearance. This study addresses these gaps through a retrospective analysis of HBV testing data from 40,268 individuals collected at Biolab Diagnostic Laboratories (2010-2024).

View Article and Find Full Text PDF

Wnt proteins are critical signaling molecules in developmental processes across animals. Despite intense study, their evolutionary roots have remained enigmatic. Using sensitive sequence analysis and structure modeling, we establish that the Wnts are part of a vast assemblage of domains, the Lipocone superfamily, defined here for the first time.

View Article and Find Full Text PDF