Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Lightless caves can harbour a wide range of living organisms. Cave animals have evolved a set of morphological, physiological, and behavioural adaptations known as troglomorphisms, enabling their survival in the perpetual darkness, narrow temperature and humidity ranges, and nutrient scarcity of the subterranean environment. In this study, we focused on adaptations of skull shape and sensory systems in the blind cave salamander, Proteus anguinus, also known as olm or simply proteus-the largest cave tetrapod and the only European amphibian living exclusively in subterranean environments. This extraordinary amphibian compensates for the loss of sight by enhanced non-visual sensory systems including mechanoreceptors, electroreceptors, and chemoreceptors. We compared developmental stages of P. anguinus with Ambystoma mexicanum, also known as axolotl, to make an exemplary comparison between cave- and surface-dwelling paedomorphic salamanders.

Findings: We used contrast-enhanced X-ray computed microtomography for the 3D segmentation of the soft tissues in the head of P. anguinus and A. mexicanum. Sensory organs were visualized to elucidate how the animal is adapted to living in complete darkness. X-ray microCT datasets were provided along with 3D models for larval, juvenile, and adult specimens, showing the cartilage of the chondrocranium and the position, shape, and size of the brain, eyes, and olfactory epithelium.

Conclusions: P. anguinus still keeps some of its secrets. Our high-resolution X-ray microCT scans together with 3D models of the anatomical structures in the head may help to elucidate the nature and origin of the mechanisms behind its adaptations to the subterranean environment, which led to a series of troglomorphisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982192PMC
http://dx.doi.org/10.1093/gigascience/giac030DOI Listing

Publication Analysis

Top Keywords

proteus anguinus
8
subterranean environment
8
sensory systems
8
x-ray microct
8
anguinus
5
living
4
living darkness
4
darkness exploring
4
exploring adaptation
4
adaptation proteus
4

Similar Publications

The olm (Proteus anguinus), with a predicted maximum lifespan of more than 100 years, is the longest-lived amphibian, which in addition possesses a range of unique adaptations to its dark, subterranean cave habitat. To assess the underlying molecular signatures, we present the first comprehensive transcriptome of the olm. Our study provides gene expression data across six organs and comparative genomics analyses, accessible via an interactive web server: http://comp-pheno.

View Article and Find Full Text PDF

Acanthocephalans are obligatory endoparasites that often alter the phenotype of their invertebrate intermediate host to facilitate trophic transmission to their final vertebrate host. , a widespread parasite of European freshwater fishes and isopod , was recently discovered also in Postojna-Planina Cave System (Slovenia) parasitising olms () and cave populations of This setting offers a unique opportunity to investigate potential fine-tuning of parasitic manipulations to the specifics of the highly divergent subterranean environment where some common phenotypic alterations lose functionality, but others might gain it. We measured three behavioural traits: movement activity, shelter-seeking, and response to light of infested and uninfested isopods from surface and cave populations.

View Article and Find Full Text PDF

High-density genotyping methods have revolutionized the field of population and conservation genetics in the past decade. To exploit the technological and analytical advances in the field, access to high-quality genetic material is a key component. However, access to such samples in endangered and rare animals is often challenging or even impossible.

View Article and Find Full Text PDF

Microplastic pollution in karst systems is still poorly studied, despite the presence of protected species and habitats, and important water reserves. Vulnerable key species hosted in these habitats could consume or assimilate microplastics, which can irreversibly damage management efforts, and thus ecosystems functionality. This can be particularly true for subterranean water habitats where microplastic pollution effects on wildlife management programs are not considered.

View Article and Find Full Text PDF