Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gut bacteria consists of 150 times more genes than humans that are vital for health. Several studies revealed that gut bacteria are associated with disease status and influence human behavior and mentality. Whether human brain injury alters the gut bacteria is yet unclear, we tested 20 fecal samples from patients with cerebral intraparenchymal hemorrhage and corresponding healthy controls through metagenomic shotgun sequencing. The composition of patients' gut bacteria changed significantly at the phylum level; Verrucomicrobiota was the specific phylum colonized in the patients' gut. The functional alteration was observed in the patients' gut bacteria, including high metabolic activity for nutrients or neuroactive compounds, strong antibiotic resistance, and less virulence factor diversity. The changes in the transcription and metabolism of differential species were more evident than those of the non-differential species between groups, which is the primary factor contributing to the functional alteration of patients with cerebral intraparenchymal hemorrhage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8966894PMC
http://dx.doi.org/10.3389/fcimb.2022.829491DOI Listing

Publication Analysis

Top Keywords

gut bacteria
24
patients' gut
16
cerebral intraparenchymal
12
intraparenchymal hemorrhage
12
patients cerebral
8
functional alteration
8
gut
7
bacteria
6
hemorrhage changes
4
patients'
4

Similar Publications

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF

American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.

PLoS One

September 2025

School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.

The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.

View Article and Find Full Text PDF

Effects and Mechanisms of Lactiplantibacillus plantarum G83 on Enterotoxigenic Escherichia coli (ETEC)-Induced Intestinal Inflammation.

Probiotics Antimicrob Proteins

September 2025

Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.

Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.

View Article and Find Full Text PDF

Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.

View Article and Find Full Text PDF

Parity influences on the infant gut microbiome development: a longitudinal cohort study.

Gut Microbes

December 2025

Clinical Microbiome Unit, Laboratory of Host Immunity and Microbiome, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD, USA.

Parity, the number of pregnancies carried beyond 20 weeks, influences the maternal gut microbiome. However, whether parity modulates the infant microbiome longitudinally remains underexplored. To address this, 746 infants in a longitudinal cohort study were assessed.

View Article and Find Full Text PDF