98%
921
2 minutes
20
Monitoring neural activity and associating neural dynamics with the anatomical connectome are required to understand how the brain works. Neural dynamics are measured by electrophysiology and optical imaging. Since the discovery of the two-photon excitation phenomenon, significant progress has been made in deep imaging for capturing neural activity from numerous neurons in vivo. The development of two-photon microscopy is aimed to image neural activity from a large and deep region with high spatial (x, y, and z) and temporal (t) resolutions at a high signal-to-noise ratio. Imaging deep regions along the optical axis (z-axis) is particularly challenging because heterogeneous biological tissues scatter and absorb light. Recent advances in the light focus modulation technology at high speeds in three dimensions (x, y, and z) have allowed multiplane two-photon imaging. z-Focus control by varifocal optical systems, such as ferroelectric liquid lenses, gradient refractive index lenses, and adaptive optical element systems, and multiplexing by time- and wavelength-division strategies have allowed to rapidly observe specimens at different focal depths. Herein, we overview the recent advances in multiplane functional imaging systems that enable four-dimensional (x, y, z, and t) analysis of neural dynamics, with a special emphasis on z-scanning mechanisms and multiplexing strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2022.03.007 | DOI Listing |
Neurotrauma Rep
August 2025
Department of Radiology, Weill Cornell Medicine; New York, New York, USA.
Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.
View Article and Find Full Text PDFiScience
September 2025
Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
Goal-directed behavior requires adjusting cognitive control, both in preparation for and in reaction to conflict. Theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral PFC (dlPFC) are known to support reactive control. Here, we investigated their role in proactive control using human intracranial electroencephalogram (EEG) recordings during a Stroop task that manipulated conflict expectations.
View Article and Find Full Text PDFFront Hum Neurosci
August 2025
Baptist Medical Center, Department of Behavioral Health, Jacksonville, FL, United States.
Introduction: This study investigates four subdomains of executive functioning-initiation, cognitive inhibition, mental shifting, and working memory-using task-based functional magnetic resonance imaging (fMRI) data and graph analysis.
Methods: We used healthy adults' functional magnetic resonance imaging (fMRI) data to construct brain connectomes and network graphs for each task and analyzed global and node-level graph metrics.
Results: The bilateral precuneus and right medial prefrontal cortex emerged as pivotal hubs and influencers, emphasizing their crucial regulatory role in all four subdomains of executive function.
J Biomed Opt
September 2025
Fraunhofer Institute for Microelectronic Circuits and Systems IMS, Duisburg, Germany.
Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
Introduction: Understanding how neural networks process complex patterns of information is crucial for advancing both neuroscience and artificial intelligence. To investigate fundamental principles of neural computation, we examined whether dissociated neuronal cultures, one of the most primitive living neural networks, exhibit regularity sensitivity beyond mere stimulus-specific adaptation and deviance detection.
Methods: We recorded activity to oddball electrical stimulation paradigms from dissociated rat cortical neurons cultured on high-resolution CMOS microelectrode arrays.